Bohr-Rogosinski radius for a certain class of close-to-convex harmonic mappings

被引:1
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Discipline Math, Bhubaneswar 752050, Odisha, India
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2023年 / 66卷 / 03期
关键词
Analytic; univalent; harmonic functions; starlike; convex; close-to-convex functions; coefficient estimates; growth theorem; Bohr radius; Bohr-Rogosisnki radius; ANALYTIC-FUNCTIONS; POWER-SERIES; SUBORDINATION; INEQUALITY; SUBCLASSES; FAMILIES; THEOREM;
D O I
10.4153/S0008439523000115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be the class of analytic functions f in the unit disk D={z is an element of C:|z|< 1} such that |f(z)|< 1 for all z is an element of D . If f is an element of B of the form f(z)= Sigma(infinity)(n=0) a(n)z(n) , then Sigma(infinity)(n=0) |a(n)z(n)| <= 1 for |z| = r <= 1/3 and 1/3 cannot be improved. This inequality is called Bohr inequality and the quantity 1/3 is called Bohr radius. If f is an element of B of the form f(z)= Sigma(infinity)(n=0)a(n)z(n) , then |Sigma(N)(n=0) a(n)z(n)| < 1 for |z| < 1/2 and the radius 1/2 is the best possible for the class B . This inequality is called Bohr-Rogosinski inequality and the corresponding radius is called Bohr-Rogosinski radius. Let H be the class of all complex-valued harmonic functions f=h+(g) over bar defined on the unit disk D , where h and g are analytic in D with the normalization h(0)=h '(0)-1=0 and g(0)=0 . Let H-0={f=h+(g) over bar is an element of H:g '(0)=0}. For alpha >= 0 and 0 <=beta < 1 , let W-H(0)(alpha,beta)={f=h+(g) over bar is an element of H0:Re(h '(z)+alpha zh ''(z)-beta)>|g '(z)+alpha zg ''(z)|,z is an element of D} be a class of close-to-convex harmonic mappings in D . In this paper, we prove the sharp Bohr-Rogosinski radius for the class W-H(0)(alpha,beta) .
引用
收藏
页码:1014 / 1029
页数:16
相关论文
共 48 条
[21]   Flow cytometric immunophenotyping of plasma cells across the spectrum of plasma cell proliferative disorders: A fresh insight with pattern-based recognition [J].
Das, Nupur ;
Dahiya, Meetu ;
Gupta, Ritu ;
Rai, Sandeep ;
Singh, Saroj ;
Prajapati, Vijay K. ;
Kumar, Lalit ;
Sharma, Atul ;
Sahoo, Ranjit K. ;
Gogia, Ajay .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2022, 102 (04) :292-302
[22]   Improved Bohr's inequality for locally univalent harmonic mappings [J].
Evdoridis, Stavros ;
Ponnusamy, Saminathan ;
Rasila, Antti .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01) :201-213
[23]   Certain subclass of starlike functions [J].
Gao, Chun-Yi ;
Zhou, Shi-Qiong .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :176-182
[24]   On a subclass of harmonic close-to-convex mappings [J].
Ghosh, Nirupam ;
Vasudevarao, A. .
MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02) :247-267
[25]   The Bohr-type operator on analytic functions and sections [J].
Huang, Yong ;
Liu, Ming-Sheng ;
Ponnusamy, Saminathan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) :317-332
[26]   Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin [J].
Huang, Yong ;
Liu, Ming-Sheng ;
Ponnusamy, Saminathan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
[27]   Refined Bohr-type inequalities with area measure for bounded analytic functions [J].
Huang, Yong ;
Liu, Ming-Sheng ;
Ponnusamy, Saminathan .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
[28]   Sharp Bohr type inequality [J].
Ismagilov, Amir ;
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
[29]  
Kayumov I. R., 2017, PREPRINT
[30]   Bohr-Rogosinski phenomenon for analytic functions and Cesaro operators [J].
Kayumov, Ilgiz R. ;
Khammatova, Diana M. ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)