Global well-posedness and optimal decay rates for a transmission problem of viscoelastic wave equations with degenerate nonlocal damping

被引:0
作者
Liu, Zhiqing [1 ]
Fang, Zhong Bo [2 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Transmission problem; Nonlocal damping; Optimal decay rate; PLATE EQUATION; BLOW-UP; ATTRACTORS; BEHAVIOR; INFINITY; MODEL;
D O I
10.1007/s00033-023-01949-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a transmission problem of viscoelastic wave equations with degenerate nonlocal damping. We prove the global well-posedness of the problem with the aid of Faedo-Galerkin technique and the multiplier method. Meantime, by introducing a new Lyapunov functional, we establish the optimal explicit and general energy decay results.
引用
收藏
页数:25
相关论文
共 24 条
[1]   Uniform stabilization for the transmission problem of the Timoshenko system with memory [J].
Alves, Margareth S. ;
Raposo, Carlos Alberto ;
Munoz Rivera, Jaime E. ;
Sepulveda, Mauricio ;
Vera Villagran, Octavio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :323-345
[2]  
Andrade D, 2006, ELECTRON J DIFFER EQ
[3]  
[Anonymous], 1997, Differ. Integral Equ.
[4]  
Arnold VI, 1989, Mathematical Methods of Classical Mechanics, DOI [10.1007/978-1-4757-2063-1, DOI 10.1007/978-1-4757-2063-1]
[5]   Blow up at infinity of solutions of polyharmonic Kirchhoff systems [J].
Autuori, G. ;
Colasuonno, F. ;
Pucci, P. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) :379-395
[6]  
Bastos WD, 2007, ELECTRON J DIFFER EQ
[7]  
Cavalcanti MM, 2004, DIFFER INTEGRAL EQU, V17, P495
[8]   Long-time dynamics of Kirchhoff wave models with strong nonlinear damping [J].
Chueshov, Igor .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1229-1262
[9]  
Silva MAJ, 2014, DIFFER INTEGRAL EQU, V27, P931
[10]   Optimal attractors of the Kirchhoff wave model with structural nonlinear damping [J].
Li, Yanan ;
Yang, Zhijian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) :7741-7773