Cascade Electrocatalytic and Thermocatalytic Reduction of CO2 to Propionaldehyde

被引:26
作者
Zhang, Jie [1 ,3 ]
Kang, Xingsi [2 ]
Yan, Yuchen [1 ,3 ]
Ding, Xue [1 ,3 ]
He, Lin [2 ]
Li, Yanguang [1 ,3 ,4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Select Oxidat Suzhou Res Inst LICP, Lanzhou Inst ChemicalPhys LICP, State Key Lab Oxo Synth, Lanzhou 730000, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[4] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn MIMSE, MUST SUDA Joint Res Ctr Adv Funct Mat, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Cascade catalysis; electrochemical CO2 reduction; hydroformylation reaction; propionaldehyde; OF-THE-ART; CARBON-DIOXIDE; CATALYZED HYDROFORMYLATION; ELECTROREDUCTION; CHALLENGES; ELECTRODES; CONVERSION; PRODUCTS; LIGANDS;
D O I
10.1002/anie.202315777
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical CO2 reduction can convert CO2 to value-added chemicals, but its selectivity toward C3+ products are very limited. One possible solution is to run the reactions in hybrid processes by coupling electrocatalysis with other catalytic routes. In this contribution, we report the cascade electrocatalytic and thermocatalytic reduction of CO2 to propionaldehyde. Using Cu(OH)(2) nanowires as the precatalyst, CO2/H2O is reduced to concentrated C2H4, CO, and H-2 gases in a zero-gap membrane electrode assembly (MEA) reactor. The thermochemical hydroformylation reaction is separately investigated with a series of rhodium-phosphine complexes. The best candidate is identified to be the one with the 1,4-bis(diphenylphosphino)butane diphosphine ligand, which exhibits a propionaldehyde turnover number of 1148 under a mild temperature and close-to-atmospheric pressure. By coupling and optimizing the upstream CO2 electroreduction and downstream hydroformylation reaction, we achieve a propionaldehyde selectivity of similar to 38 % and a total C-3 oxygenate selectivity of 44 % based on reduced CO2. These values represent a more than seven times improvement over the best prior electrochemical system alone or over two times improvement over other hybrid systems.
引用
收藏
页数:6
相关论文
共 53 条
[1]   Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel [J].
Akhavan, O. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (23)
[2]  
Beller M, 2006, TOP ORGANOMETAL CHEM, V18
[3]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[4]   Utilizing CO2 as a Reactant for C3 Oxygenate Production via Tandem Reactions [J].
Biswas, Akash N. ;
Winter, Lea R. ;
Xie, Zhenhua ;
Chen, Jingguang G. .
JACS AU, 2023, 3 (02) :293-305
[5]   Tandem Electrocatalytic-Thermocatalytic Reaction Scheme for CO2 Conversion to C3 Oxygenates [J].
Biswas, Akash N. ;
Xie, Zhenhua ;
Xia, Rong ;
Overa, Sean ;
Jiao, Feng ;
Chen, Jingguang G. .
ACS ENERGY LETTERS, 2022, 7 (09) :2904-2910
[6]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[7]   Highly Efficient Electroreduction of CO2to C2+Alcohols on Heterogeneous Dual Active Sites [J].
Chen, Chunjun ;
Yan, Xupeng ;
Liu, Shoujie ;
Wu, Yahui ;
Wan, Qiang ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Liu, Huizhen ;
Ma, Jun ;
Zheng, Lirong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16459-16464
[8]   FMPhos: Expanding the Catalytic Capacity of Small-Bite-Angle Bisphosphine Ligands in Regioselective Alkene Hydrofunctionalizations [J].
Chen, Xiao-Yang ;
Zhou, Xukai ;
Wang, Jianchun ;
Dong, Guangbin .
ACS CATALYSIS, 2020, 10 (24) :14349-14358
[9]   Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities [J].
Cuellar, N. S. Romero ;
Wiesner-Fleischer, K. ;
Fleischer, M. ;
Rucki, A. ;
Hinrichsen, O. .
ELECTROCHIMICA ACTA, 2019, 307 :164-175
[10]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+