CONVERGENCE, OPTIMAL POINTS AND APPLICATIONS

被引:0
作者
Sharma, Shagun [1 ]
Chandok, Sumit [1 ]
机构
[1] Thapar Inst Engn & Technol, Sch Math, Patiala 147004, India
关键词
best proximity point; fixed point; uniformly convex Banach space; contraction mappings; PROXIMITY POINTS; METRIC-SPACES; FIXED-POINTS; EXISTENCE; THEOREMS;
D O I
10.18514/MMN.2023.4265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on the existence of the best proximity points in binormed linear spaces. As a consequence, we obtain some fixed point results. We also provide some illustrations to support our claims. As applications, we obtain the existence of a solution to split feasible and variational inequality problems.
引用
收藏
页码:1527 / 1539
页数:13
相关论文
共 20 条
[1]   Equivalence of Certain Iteration Processes Obtained by Two New Classes of Operators [J].
Abbas, Mujahid ;
Anjum, Rizwan ;
Berinde, Vasile .
MATHEMATICS, 2021, 9 (18)
[2]  
Abkar A, 2013, J NONLINEAR CONVEX A, V14, P653
[3]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[4]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[5]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]
[6]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[7]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[8]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&
[9]   Best proximity points of cyclic mappings [J].
Karapinar, Erdal .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1761-1766
[10]  
Karapinar E, 2011, APPL MATH INFORM SCI, V5, P558