Uncovering the Dynamics of Urease and Carbonic Anhydrase Genes in Ureolysis, Carbon Dioxide Hydration, and Calcium Carbonate Precipitation

被引:8
作者
Saracho, Alexandra Clara [1 ]
Marek, Ewa J. [2 ]
机构
[1] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
基金
英国自然环境研究理事会;
关键词
climate change; CO2; sequestration; microbially induced calcium carbonate precipitation; microbialmetabolism; HELICOBACTER-PYLORI; ROOM-TEMPERATURE; CO2; CAPTURE; CACO3; CRYSTALLIZATION; GROWTH; SOLUBILITY; MORPHOLOGY; MECHANISM;
D O I
10.1021/acs.est.3c06617
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The hydration of CO2 suffers from kinetic inefficiencies that make its natural trapping impractically sluggish. However, CO2-fixing carbonic anhydrases (CAs) remarkably accelerate its equilibration by 6 orders of magnitude and are, therefore, "ideal" catalysts. Notably, CA has been detected in ureolytic bacteria, suggesting its potential involvement in microbially induced carbonate precipitation (MICP), yet the dynamics of the urease (Ur) and CA genes remain poorly understood. Here, through the use of the ureolytic bacteriumSporosarcina pasteurii, we investigate the differing role of Ur and CA in ureolysis, CO2 hydration, and CaCO3 precipitation with increasing CO2(g) concentrations. We show that Ur gene up-regulation coincides with an increase in [HCO3-] following the hydration of CO2 to HCO3- by CA. Hence, CA physiologically promotes buffering, which enhances solubility trapping and affects the phase of the CaCO3 mineral formed. Understanding the role of CO2 hydration on the performance of ureolysis and CaCO3 precipitation provides essential new insights, required for the development of next-generation biocatalyzed CO2 trapping technologies.
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 79 条
  • [1] Abdel-Basset R., 2020, LANCET, DOI [10.5194/bg-2020-378, DOI 10.5194/BG-2020-378]
  • [2] Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation
    Achal, Varenyam
    Pan, Xiangliang
    Ozyurt, Nilufer
    [J]. ECOLOGICAL ENGINEERING, 2011, 37 (04) : 554 - 559
  • [3] Competition Between Kinetics and Thermodynamics During the Growth of Faceted Crystal by Phase Field Modeling
    Albani, Marco
    Bergamaschini, Roberto
    Salvalaglio, Marco
    Voigt, Axel
    Miglio, Leo
    Montalenti, Francesco
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (07):
  • [4] Andersen, 2002, J GEOSCI ED, V50, P389, DOI DOI 10.5408/1089-9995-50.4.389
  • [5] ARMSTRONG JM, 1966, J BIOL CHEM, V241, P5137
  • [6] Kinetic control of particle-mediated calcium carbonate crystallization
    Aziz, Baroz
    Gebauer, Denis
    Hedin, Niklas
    [J]. CRYSTENGCOMM, 2011, 13 (14): : 4641 - 4645
  • [7] Engineered yeast for enhanced CO2 mineralization
    Barbero, Roberto
    Carnelli, Lino
    Simon, Anna
    Kao, Albert
    Monforte, Alessandra d'Arminio
    Ricco, Moreno
    Bianchi, Daniele
    Belcher, Angela
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) : 660 - 674
  • [8] Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species
    Burgos-Cara, Alejandro
    Putnis, Christine V.
    Rodriguez-Navarro, Carlos
    Ruiz-Agudo, Encarnacion
    [J]. MINERALS, 2017, 7 (07):
  • [9] Roles of α and β carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa
    Bury-Mone, Stephanie
    Mendz, George L.
    Ball, Graham E.
    Thibonnier, Marie
    Stingl, Kerstin
    Ecobichon, Chantal
    Ave, Patrick
    Fluerre, Michel
    Labigne, Agnes
    Thiberge, Jean-Michel
    De Reuse, Hilde
    [J]. INFECTION AND IMMUNITY, 2008, 76 (02) : 497 - 509
  • [10] Effects of clay's chemical interactions on biocementation
    Cardoso, Rafaela
    Pires, Ines
    Duarte, Sofia O. D.
    Monteiro, Gabriel A.
    [J]. APPLIED CLAY SCIENCE, 2018, 156 : 96 - 103