Deep Attention Assisted Multi-resolution Networks for the Segmentation of White Matter Hyperintensities in Postmortem MRI Scans

被引:1
作者
Nirmala, Anoop Benet [1 ]
Rashid, Tanweer [1 ]
Fadaee, Elyas [1 ]
Honnorat, Nicolas [1 ]
Li, Karl [1 ]
Charisis, Sokratis [1 ]
Wang, Di [1 ]
Vemula, Aishwarya [1 ]
Li, Jinqi [1 ]
Fox, Peter [1 ]
Richardson, Timothy E. [1 ,2 ]
Walker, Jamie M. [1 ]
Bieniek, Kevin [1 ]
Seshadri, Sudha [1 ]
Habes, Mohamad [1 ]
机构
[1] Univ Texas Hlth Sci Ctr San Antonio, Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, San Antonio, TX 78229 USA
[2] Icahn Sch Med Mt Sinai, New York, NY USA
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING, MLCN 2023 | 2023年 / 14312卷
关键词
Convolutional Neural Network; White Matter Hyperintensities; Postmortem Brain MRI; AUTOMATIC SEGMENTATION; IMAGES;
D O I
10.1007/978-3-031-44858-4_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the presence of cardiovascular disease and neurodegenerative disorders, the white matter of the brains of clinical study participants often present bright spots in T2-weighted Magnetic Resonance Imaging scans. The pathways contributing to the emergence of these white matter hyperintensities are still debated. By offering the possibility to directly compare MRI patterns with cellular and tissue alterations, research studies coupling postmortem imaging with histological studies are the most likely to provide a satisfactory answer to these open questions. Unfortunately, manually segmenting white matter hyperintensities in postmortem MRI scans before histology is time-consuming and laborintensive. In this work, we propose to tackle this issue with new, fully automatic segmentation tools relying on the most recent Deep Learning architectures. More specifically, we compare the ability to predict white matter hyperintensities from a registered pair of T1 and T2-weighted postmortem MRI scans of five Unet architectures: the original Unet, DoubleUNet, Attention UNet, Multiresolution UNet, and a new architecture specifically designed for the task. A detailed comparison between these five Unets and an ablation study, carried out on the sagittal slices of 13 pairs of high-resolution T1 and T2 weighted MRI scans manually annotated by neuroradiologists, demonstrate the superiority of our new approach and provide an estimation of the performance gains offered by the modules introduced in the new architecture.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 31 条
[1]   Probabilistic segmentation of white lesions in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
NEUROIMAGE, 2004, 21 (03) :1037-1044
[2]   An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Wu, Jue ;
Cook, Philip A. ;
Gee, James C. .
NEUROINFORMATICS, 2011, 9 (04) :381-400
[3]   Older people with impaired mobility have specific loci of periventricular abnormality on MRI [J].
Benson, RR ;
Guttmann, CRG ;
Wei, X ;
Warfield, SK ;
Hall, C ;
Schmidt, JA ;
Kikinis, R ;
Wolfson, LI .
NEUROLOGY, 2002, 58 (01) :48-55
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change [J].
Fiford, Cassidy M. ;
Sudre, Carole H. ;
Pemberton, Hugh ;
Walsh, Phoebe ;
Manning, Emily ;
Malone, Ian B. ;
Nicholas, Jennifer ;
Bouvy, Willem H. ;
Carmichael, Owen T. ;
Biessels, Geert Jan ;
Cardoso, M. Jorge ;
Barnes, Josephine .
NEUROINFORMATICS, 2020, 18 (03) :429-449
[6]   Automatic Segmentation of White Matter Hyperintensities in the Elderly Using FLAIR Images at 3T [J].
Gibson, Erin ;
Gao, Fuqiang ;
Black, Sandra E. ;
Lobaugh, Nancy J. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (06) :1311-1322
[7]   White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype [J].
Giese, Anne-Katrin ;
Schirmer, Markus D. ;
Dalca, Adrian V. ;
Sridharan, Ramesh ;
Donahue, Kathleen L. ;
Nardin, Marco ;
Irie, Robert ;
McIntosh, Elissa C. ;
Mocking, Steven J. T. ;
Xu, Huichun ;
Cole, John W. ;
Giralt-Steinhauer, Eva ;
Jimenez-Conde, Jordi ;
Jern, Christina ;
Kleindorfer, Dawn O. ;
Lemmens, Robin ;
Wasselius, Johan ;
Lindgren, Arne ;
Rundek, Tatjana ;
Sacco, Ralph L. ;
Schmidt, Reinhold ;
Sharma, Pankaj ;
Slowik, Agnieszka ;
Thijs, Vincent ;
Worrall, Bradford B. ;
Woo, Daniel ;
Kittner, Steven J. ;
McArdle, Patrick F. ;
Mitchell, Braxton D. ;
Rosand, Jonathan ;
Meschia, James F. ;
Wu, Ona ;
Golland, Polina ;
Rost, Natalia S. .
NEUROLOGY, 2020, 95 (01) :E79-E88
[8]   Improved detection of incipient vascular changes by a biotechnological platform combining post mortem MRI in situ with neuropathology [J].
Grinberg, Lea Tenenholz ;
Amaro Junior, Edson ;
da Silva, Alexandre Valotta ;
da Silva, Rafael Emidio ;
Sato, Joao Ricardo ;
dos Santos, Denis Dionizio ;
Pacheco, Silmara de Paula ;
de Lucena Ferretti, Renata Eloah ;
Paraizo Leite, Renata Elaine ;
Pasqualucci, Carlos Augusto ;
Teipel, Stefan J. ;
Flatz, Wilhelm H. ;
Heinsen, Helmut .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2009, 283 (1-2) :2-8
[9]   White matter lesions Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy [J].
Habes, Mohamad ;
Sotiras, Aristeidis ;
Erus, Guray ;
Toledo, Jon B. ;
Janowitz, Deborah ;
Wolk, David A. ;
Shou, Haochang ;
Bryan, Nick R. ;
Doshi, Jimit ;
Voelzke, Henry ;
Schminke, Ulf ;
Hoffmann, Wolfgang ;
Resnick, Susan M. ;
Grabe, Hans J. ;
Davatzikos, Christos .
NEUROLOGY, 2018, 91 (10) :E964-E975
[10]   White matter hyperintensities and imaging patterns of brain ageing in the general population [J].
Habes, Mohamad ;
Erus, Guray ;
Toledo, Jon B. ;
Zhang, Tianhao ;
Bryan, Nick ;
Launer, Lenore J. ;
Rosseel, Yves ;
Janowitz, Deborah ;
Doshi, Jimit ;
Van der Auwera, Sandra ;
von Sarnowski, Bettina ;
Hegenscheid, Katrin ;
Hosten, Norbert ;
Homuth, Georg ;
Voelzke, Henry ;
Schminke, Ulf ;
Hoffmann, Wolfgang ;
Grabe, Hans J. ;
Davatzikos, Christos .
BRAIN, 2016, 139 :1164-1179