Sodium Layered/Tunnel Intergrowth Oxide Cathodes: Formation Process, Interlocking Chemistry, and Electrochemical Performance

被引:14
作者
Su, Yu [1 ,2 ]
Zhang, Ning-Ning [1 ]
Li, Jia-Yang [2 ]
Liu, Yifeng [2 ]
Hu, Hai-Yan [1 ,2 ]
Wang, Jingqiang [2 ]
Li, Hongwei [2 ]
Kong, Ling-Yi [1 ,2 ]
Jia, Xin-Bei [1 ,2 ]
Zhu, Yan-Fang [1 ,2 ]
Chen, Shuangqiang [1 ,2 ]
Wang, Jia-Zhao [2 ]
Dou, Shi-Xue [3 ]
Chou, Shulei [1 ,2 ]
Xiao, Yao [1 ,2 ,4 ]
机构
[1] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[2] Wenzhou Univ, Technol Innovat Inst Carbon Neutralizat, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Peoples R China
[3] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion battery; layered/tunnel intergrowth; oxide cathodes; interlocking chemistry; synergistic effect; HIGH-VOLTAGE; HIGH-ENERGY; ION; P2-TYPE; SUBSTITUTION; STABILITY; ELECTRODE;
D O I
10.1021/acsami.3c07164
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Manganese-based layered oxides are prospective cathode materials for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. The biphasic intergrowth structure of layered cathode materials is essential for improving the sodium storage performance, which is attributed to the synergistic effect between the two phases. However, the in-depth formation mechanism of biphasic intergrowth materials remains unclear. Herein, the layered/tunnel intergrowth Na0.6MnO2 (LT-NaMO) as a model material was successfully prepared, and their formation processes and electrochemical performance were systematically investigated. In situ high-temperature X-ray diffraction displays the detailed evolution process and excellent thermal stability of the layered/tunnel intergrowth structure. Furthermore, severe structural strain and large lattice volume changes are significantly mitigated by the interlocking effect between the phase interfaces, which further enhances the structural stability of the cathode materials during the charging/discharging process. Consequently, the LT-NaMO cathode displays fast Na+ transport kinetics with a remarkable capacity retention of similar to 70.5% over 300 cycles at 5C, and its assembled full cell with hard carbon also exhibits high energy density. These findings highlight the superior electrochemical performance of intergrowth materials due to interlocking effects between layered and tunnel structures and also provide unique insights into the construction of intergrowth cathode materials for SIBs.
引用
收藏
页码:44839 / 44847
页数:9
相关论文
共 65 条
  • [1] Electrochemical investigation of the P2-NaxCoO2 phase diagram
    Berthelot, R.
    Carlier, D.
    Delmas, C.
    [J]. NATURE MATERIALS, 2011, 10 (01) : 74 - U3
  • [2] P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries
    Chen, Cong
    Huang, Weiyuan
    Li, Yiwei
    Zhang, Mingjian
    Nie, Kaiqi
    Wang, Jiaou
    Zhao, Wenguang
    Qi, Rui
    Zuo, Changjian
    Li, Zhibo
    Yi, Haocong
    Pan, Feng
    [J]. NANO ENERGY, 2021, 90
  • [3] Oxide cathodes for sodium-ion batteries: Designs, challenges, and perspectives
    Chen, Tao
    Ouyang, Baixue
    Fan, Xiaowen
    Zhou, Weili
    Liu, Weifang
    Liu, Kaiyu
    [J]. CARBON ENERGY, 2022, 4 (02) : 170 - 199
  • [4] Understanding of the sodium storage mechanism in hard carbon anodes
    Chen, Xiaoyang
    Liu, Changyu
    Fang, Yongjin
    Ai, Xinping
    Zhong, Faping
    Yang, Hanxi
    Cao, Yuliang
    [J]. CARBON ENERGY, 2022, 4 (06) : 1133 - 1150
  • [5] Achieving high energy density and high power density with pseudocapacitive materials
    Choi, Christopher
    Ashby, David S.
    Butts, Danielle M.
    DeBlock, Ryan H.
    Wei, Qiulong
    Lau, Jonathan
    Dunn, Bruce
    [J]. NATURE REVIEWS MATERIALS, 2020, 5 (01) : 5 - 19
  • [6] Sodium-Ion Batteries: From Academic Research to Practical Commercialization
    Deng, Jianqiu
    Luo, Wen-Bin
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (04)
  • [7] Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries
    Deng, Qiang
    Zheng, Fenghua
    Zhong, Wentao
    Pan, Qichang
    Liu, Yanzhen
    Li, Youpeng
    Li, Yijuan
    Hu, Junhua
    Yang, Chenghao
    Liu, Meilin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 404
  • [8] Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries
    Ge, Junmin
    Zhang, Yaoyang
    Xie, Zhengkun
    Xie, Huabin
    Chen, Weihua
    Lu, Bingan
    [J]. NANO RESEARCH, 2023, 16 (04) : 4996 - 5005
  • [9] Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries
    Ge, Junmin
    Fan, Ling
    Rao, Apparao M.
    Zhou, Jiang
    Lu, Bingan
    [J]. NATURE SUSTAINABILITY, 2022, 5 (03) : 225 - 234
  • [10] High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries
    Gu, Zhen-Yi
    Guo, Jin-Zhi
    Zhao, Xin-Xin
    Wang, Xiao-Tong
    Xie, Dan
    Sun, Zhong-Hui
    Zhao, Chen-De
    Liang, Hao-Jie
    Li, Wen-Hao
    Wu, Xing-Long
    [J]. INFOMAT, 2021, 3 (06) : 694 - 704