Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization

被引:10
|
作者
Guo, Jianchao [1 ,2 ]
He, Jiaqi [1 ,2 ]
Yuan, Zuqing [1 ]
Tao, Juan [1 ]
Liu, Xiangyu [1 ,2 ]
Song, Zhuoyu [3 ]
Gao, Wenchao [1 ,2 ]
Wang, Chunfeng [4 ]
Pan, Caofeng [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Liaoning, Peoples R China
[4] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Self-powered; Angle-resolved; Underwater localization; Marine engineering; BLUE ENERGY; WAVE;
D O I
10.1016/j.nanoen.2023.108392
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Precise locating in underwater environment is essential for marine engineering and national security. However, the current technologies usually suffer from energy and complexity issues. Here, a self-powered angle-resolved triboelectric nanogenerator (AR-TENG) is proposed for underwater vibration detecting and locating in a simple and energy-effective fashion. The AR-TENG is made of metal balls and an inverted conical unit consisting of fluorinated ethylene propylene film and multiple sector-like electrodes, where each electrode corresponding to one sensing channel. Each channel of AR-TENG can respond to low-frequency variations with linear electrical outputs and a maximum power density of 1.28 mu W center dot cm(-2) at a load resistance of 200 M Omega. Most importantly, the output voltage ratio of two adjacent channels is only related to the vibration direction, endowing AR-TENG with the capability of vibration direction recognition with an angle resolution of 15 degrees. As a result, the underwater vibration locating can be realized by simply intersecting the vibration directions respectively determined by two AR-TENGs arranged in parallel, performing a locating accuracy of >95 %, assisted with a simple trigonometric function and geometric relation. This new scheme is simple, effective and energy-autonomous, holding great potential for various underwater applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator
    Chen, Shuwen
    Gao, Caizhen
    Tang, Wei
    Zhu, Huarui
    Han, Yu
    Jiang, Qianwen
    Li, Tao
    Cao, Xia
    Wang, Zhonglin
    NANO ENERGY, 2015, 14 : 217 - 225
  • [32] Self-Powered Sensor Based on Triboelectric Nanogenerator for Landslide Displacement Measurement
    Chen, Jinguo
    Zou, Hao
    Pan, Guangzhi
    Mao, Shuai
    Chen, Bing
    Wu, Chuan
    JOURNAL OF SENSORS, 2024, 2024
  • [33] A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator
    Shan, Baichuan
    Liu, Changxin
    Chen, Runhe
    Qu, Guanghao
    Sui, Hao
    Chen, Nanxi
    Xing, Guangyi
    MATERIALS TODAY NANO, 2023, 24
  • [34] Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator
    Aifang Yu
    Ming Song
    Yan Zhang
    Yang Zhang
    Libo Chen
    Junyi Zhai
    Zhong Lin Wang
    Nano Research, 2015, 8 : 765 - 773
  • [35] Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator
    Li, Jiayu
    Liu, Boxun
    Liang, Chuangjian
    Wan, Lingyu
    Wei, Wenjuan
    Gao, Hongqiang
    Li, Mingyang
    Li, Yahui
    Ding, Wangyang
    Qu, Hang
    Wen, Honggui
    Yu, Fang
    Yao, Huilu
    Liu, Guanlin
    Peng, Biaolin
    Lu, Xiang
    NANO ENERGY, 2022, 101
  • [36] Reconfigurable Fiber Triboelectric Nanogenerator for Self-Powered Defect Detection
    Zhou, Liang
    Liu, Delei
    Ren, Lili
    Xue, Hao
    Li, Bo
    Niu, Shichao
    Liu, Qiang
    Han, Zhiwu
    Ren, Luquan
    ACS NANO, 2022, 16 (05) : 7721 - 7731
  • [37] Double helix triboelectric nanogenerator for self-powered weight sensors
    Fu, Jiangming
    Xia, Kequan
    Xu, Zhiwei
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 323
  • [38] Quaternary Dielectric Triboelectric Nanogenerator for Self-Powered Electrochemical Systems
    Chen, Huilin
    Hu, Baoshan
    Li, Qianying
    Ding, Yanhong
    Yang, Huake
    Li, Xiaochuan
    Yang, Qianxi
    Xi, Yi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44655 - 44664
  • [39] Self-Powered Landslide Displacement Sensor Based on Triboelectric Nanogenerator
    Zhang, Yongquan
    Chuan, Wu
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18042 - 18049
  • [40] Self-Powered Speed Sensor for Turbodrills Based on Triboelectric Nanogenerator
    Wu, Chuan
    Fan, Chenxing
    Wen, Guojun
    SENSORS, 2019, 19 (22)