Some New Hermite-Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals

被引:21
作者
Kashuri, Artion [1 ]
Sahoo, Soubhagya Kumar [2 ]
Aljuaid, Munirah [3 ]
Tariq, Muhammad [4 ,5 ]
De La sen, Manuel [6 ]
机构
[1] Univ Ismail Qemali, Fac Tech & Nat Sci, Dept Math, Vlora 9400, Albania
[2] Dept Math, CV Raman Global Univ, Bhubaneswar 752054, India
[3] Northern Border Univ, Coll Sci, Dept Math, Ar Ar 73213, Saudi Arabia
[4] Mehran UET, Dept Basic Sci & Related Studies, Jamshoro 76062, Pakistan
[5] Balochistan Residential Coll, Dept Math, Loralai 84800, Pakistan
[6] Univ Basque Country, Inst Res & Dev Proc, Fac Sci & Technol, Dept Elect & Elect, Leioa 48940, Spain
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
generalized multiplicative fractional integrals; Hermite-Hadamard type inequalities; multiplicative convex functions; Holder's inequality; power mean inequality; numerical analysis; LOG-CONVEX FUNCTIONS; CALCULUS;
D O I
10.3390/sym15040868
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is significant interaction between the class of symmetric functions and other types of functions. The multiplicative convex function class, which is intimately related to the idea of symmetry, is one of them. In this paper, we obtain some new generalized multiplicative fractional Hermite-Hadamard type inequalities for multiplicative convex functions and for their product. Additionally, we derive a number of inequalities for multiplicative convex functions related to generalized multiplicative fractional integrals utilising a novel identity as an auxiliary result. We provide some examples for the appropriate selections of multiplicative convex functions and their graphical representations to verify the authenticity of our main results.
引用
收藏
页数:15
相关论文
共 52 条
[1]  
Aamir Ali Muhammad, 2021, Proyecciones (Antofagasta), V40, P743, DOI [10.22199/issn.0717-6279-4136, 10.22199/issn.0717-6279-4136]
[2]  
Abdeljawad T., 2016, J SEMIGROUP THEORY A, V2016, P2
[3]   New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications [J].
Abdeljawad, Thabet ;
Mohammed, Pshtiwan Othman ;
Kashuri, Artion .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[4]  
Abramovich S, 2017, MATH NOTES+, V102, P599, DOI [10.1134/S0001434617110013, 10.4213/mzm11776]
[5]   Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Torebek, Berikbol T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 :120-129
[6]   Generalized Fractional Integral Inequalities for Continuous Random Variables [J].
Akkurt, Abdullah ;
Kacar, Zeynep ;
Yildirim, Huseyin .
JOURNAL OF PROBABILITY AND STATISTICS, 2015, 2015
[7]  
Ali MA, 2019, Asian Research Journal of Mathematics, P1, DOI [10.9734/arjom/2019/v12i330084, 10.9734/ajahr/2019/v3i430006, 10.9734/ARJOM/2019/V12I330084, DOI 10.9734/ARJOM/2019/V12I330084]
[8]   ON HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED MULTIPLICATIVE INTEGRALS [J].
Ali, Muhammad Aamir ;
Zhang, Zhiyue ;
Budak, Huseyin ;
Sarikaya, Mehmet Zeki .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02) :1428-1448
[9]   RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING [J].
Anastassiou, George A. .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) :1423-1433
[10]  
Anwar M.S., 2019, THESIS LAHORE U LAHO