Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature

被引:18
作者
Yang, Feng [1 ,2 ]
Yao, Junru [1 ,2 ]
Shen, Zhou [1 ]
Ma, Qing [1 ,3 ]
Peng, Guiyu [1 ,2 ]
Zhou, Jintang [1 ,2 ]
Yao, Zhengjun [1 ,2 ]
Tao, Xuewei [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 211100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Mat Preparat & Protect Harsh Environm, Minist Ind & Informat Technol, Nanjing 211100, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[4] Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional aerogel; Electromagnetic wave absorption; Thermal insulation; Sound absorption; Thermal environment; MICROWAVE-ABSORPTION; SOUND-ABSORPTION; COMPOSITES; BAND; LIGHTWEIGHT; OXIDE; ZNO;
D O I
10.1016/j.jcis.2023.02.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the complex engineering applications of electromagnetic (EM) wave-absorbing materials, it is insufficient for these materials to exhibit only efficient EM wave attenuation ability. EM wave-absorbing materials featuring numerous multifunctional properties are increasingly attractive for next-generation wireless communication and smart devices. Herein, we constructed a lightweight and robust multifunctional hybrid aerogel consisting of carbon nanotubes/aramid nanofibers/polyimide with low shrinkage and high porosity. The hybrid aerogels exhibit excellent EM wave attenuation, with an effective absorption bandwidth covering the entire X-band from 25 degrees C to 400 degrees C. The conductive loss capacity of the hybrid aerogel is enhanced under thermal drive, which results in an enhanced ability to attenuate EM waves, as evidenced by the fact that the best-fit thickness drops from 5.3 to 3.6 mm with increasing tem-perature. In addition, the hybrid aerogels are capable to efficiently absorb sound waves, with an average absorption coefficient as high as 0.86 at 1-6.3 kHz, and they exhibit superior thermal insulation proper-ties, with a thermal conductivity as low as 41 +/- 2 mW/mK. They are thus suitable for applications in the anti-icing and infrared stealth fields. The prepared multifunctional aerogels have considerable potential for EM protection, noise reduction, and thermal insulation in harsh thermal environments.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:843 / 854
页数:12
相关论文
共 57 条
  • [1] Bioinspired large-scale aligned porous materials assembled with dual temperature gradients
    Bai, Hao
    Chen, Yuan
    Delattre, Benjamin
    Tomsia, Antoni P.
    Ritchie, Robert O.
    [J]. SCIENCE ADVANCES, 2015, 1 (11):
  • [2] Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion
    Cao, Maosheng
    Wang, Xixi
    Cao, Wenqiang
    Fang, Xiaoyong
    Wen, Bo
    Yuan, Jie
    [J]. SMALL, 2018, 14 (29)
  • [3] Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor
    Chen, Xiaoyu
    Liu, Hu
    Zheng, Yanjun
    Zhai, Yue
    Liu, Xianhu
    Liu, Chuntai
    Mi, Liwei
    Guo, Zhanhu
    Shen, Changyu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (45) : 42594 - 42606
  • [4] Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding
    Cui, Ce
    Xiang, Cheng
    Geng, Liang
    Lai, Xiaoxu
    Guo, Ronghui
    Zhang, Yong
    Xiao, Hongyan
    Lan, Jianwu
    Lin, Shaojian
    Jiang, Shouxiang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 1246 - 1255
  • [5] Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties
    Du, Heng
    Zhang, Qipeng
    Zhao, Biao
    Marken, Frank
    Gao, Qiancheng
    Lu, Hongxia
    Guan, Li
    Wang, Hailong
    Shao, Gang
    Xu, Hongliang
    Zhang, Rui
    Fan, Bingbing
    [J]. JOURNAL OF ADVANCED CERAMICS, 2021, 10 (05) : 1042 - 1051
  • [6] Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption
    Gu, Weihua
    Sheng, Jiaqi
    Huang, Qianqian
    Wang, Gehuan
    Chen, Jiabin
    Ji, Guangbin
    [J]. NANO-MICRO LETTERS, 2021, 13 (01)
  • [7] Multifunctional Bulk Hybrid Foam for Infrared Stealth, Thermal Insulation, and Microwave Absorption
    Gu, Weihua
    Tan, Junwen
    Chen, Jiabin
    Zhang, Zhu
    Zhao, Yue
    Yu, Jiwen
    Ji, Guangbin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (25) : 28727 - 28737
  • [8] Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance
    Han, Liyuan
    Li, Kezhi
    Fu, Yanqin
    Yin, Xuemin
    Jiao, Yameng
    Song, Qiang
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 222
  • [9] Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites
    Han, Tao
    Luo, Ruiying
    Cui, Guangyuan
    Wang, Lianyi
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (05) : 1743 - 1756
  • [10] Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption
    Hou, Tianqi
    Jia, Zirui
    Dong, Yuhao
    Liu, Xuehua
    Wu, Guanglei
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 431