Role of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis

被引:6
作者
Canosa, Antonio [1 ,2 ,3 ]
Martino, Alessio [3 ,4 ]
Manera, Umberto [1 ,2 ]
Vasta, Rosario [1 ]
Grassano, Maurizio [1 ]
Palumbo, Francesca [1 ]
Cabras, Sara [1 ]
Di Pede, Francesca [1 ]
Arena, Vincenzo [5 ]
Moglia, Cristina [1 ,2 ]
Giuliani, Alessandro [6 ]
Calvo, Andrea [1 ,2 ,7 ]
Chio, Adriano [1 ,2 ,3 ,7 ]
Pagani, Marco [3 ,8 ]
机构
[1] Univ Turin, ALS Ctr, Rita Levi Montalcini Dept Neurosci, Via Cherasco 15, I-10126 Turin, Italy
[2] Azienda Osped Univ Citta Salute & Sci Torino, SC Neurol 1U, Turin, Italy
[3] CNR, Inst Cognit Sci & Technol, Rome, Italy
[4] LUISS Univ, Dept Business & Management, Viale Romania 32, I-00197 Rome, Italy
[5] AFFIDEA IRMET SpA, Positron Emiss Tomog Ctr, Turin, Italy
[6] Ist Super Sanit, Environm & Hlth Dept, Rome, Italy
[7] Neurosci Inst Turin NIT, Turin, Italy
[8] Karolinska Univ Hosp, Dept Med Radiat Phys & Nucl Med, Stockholm, Sweden
关键词
Amyotrophic lateral sclerosis; 2-[F-18]FDG-PET; Survival; Prediction model; VALIDATION; DIAGNOSIS; PATHOLOGY; ALS; PET;
D O I
10.1007/s00259-022-05987-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The identification of prognostic tools in amyotrophic lateral sclerosis (ALS) would improve the design of clinical trials, the management of patients, and life planning. We aimed to evaluate the accuracy of brain 2-[F-18]fluoro-2-deoxy-D-glucose-positron-emission tomography (2-[F-18]FDG-PET) as an independent predictor of survival in ALS. Methods A prospective cohort study enrolled 418 ALS patients, who underwent brain 2-[F-18]FDG-PET at diagnosis and whose survival time was available. We discretized the survival time in a finite number of classes in a data-driven fashion by employing a k-means-like strategy. We identified "hot brain regions" with maximal power in discriminating survival classes, by evaluating the Laplacian scores in a class-aware fashion. We retained the top-m features for each class to train the classification systems (i.e., a support vector machine, SVM), using 10% of the ALS cohort as test set. Results Data were discretized in three survival profiles: 0-2 years, 2-5 years, and > 5 years. SVM resulted in an error rate < 20% for two out of three classes separately. As for class one, the discriminant clusters included left caudate body and anterior cingulate cortex. The most discriminant regions were bilateral cerebellar pyramid in class two, and right cerebellar dentate nucleus, and left cerebellar nodule in class three. Conclusion Brain 2-[F-18]FDG-PET along with artificial intelligence was able to predict with high accuracy the survival time range in our ALS cohort. Healthcare professionals can benefit from this prognostic tool for planning patients' management and follow-up. 2-[F-18]FDG-PET represents a promising biomarker for individual patients' stratification in clinical trials. The lack of a multicentre external validation of the model warrants further studies to evaluate its generalization capability.
引用
收藏
页码:784 / 791
页数:8
相关论文
共 29 条
  • [1] Survival prediction models in motor neuron disease
    Agosta, F.
    Spinelli, E. G.
    Riva, N.
    Fontana, A.
    Basaia, S.
    Canu, E.
    Castelnovo, V.
    Falzone, Y.
    Carrera, P.
    Comi, G.
    Filippi, M.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2019, 26 (09) : 1143 - 1152
  • [2] Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale
    Balendra, Rubika
    Jones, Ashley
    Jivraj, Naheed
    Knights, Catherine
    Ellis, Catherine M.
    Burman, Rachel
    Turner, Martin R.
    Leigh, P. Nigel
    Shaw, Christopher E.
    Al-Chalabi, Ammar
    [J]. AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2014, 15 (3-4) : 279 - 284
  • [3] Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis
    Braak, Heiko
    Del Tredici, Kelly
    [J]. JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2018, 77 (01) : 74 - 83
  • [4] Stages of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis
    Brettschneider, Johannes
    Del Tredici, Kelly
    Toledo, Jon B.
    Robinson, John L.
    Irwin, David J.
    Grossman, Murray
    Suh, EunRan
    Van Deerlin, Vivianna M.
    Wood, Elisabeth M.
    Baek, Young
    Kwong, Linda
    Lee, Edward B.
    Elman, Lauren
    McCluskey, Leo
    Fang, Lubin
    Feldengut, Simone
    Ludolph, Albert C.
    Lee, Virginia M. -Y.
    Braak, Heiko
    Trojanowski, John Q.
    [J]. ANNALS OF NEUROLOGY, 2013, 74 (01) : 20 - 38
  • [5] El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis
    Brooks, BR
    Miller, RG
    Swash, M
    Munsat, TL
    [J]. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS, 2000, 1 (05): : 293 - 299
  • [6] Brown RH, 2017, NEW ENGL J MED, V377, P1602, DOI [10.1056/NEJMra1603471, 10.1016/S0140-6736(17)31287-4, 10.1056/NEJMc1710379, 10.1038/nrdp.2017.85, 10.1016/S0140-6736(10)61156-7]
  • [7] Disease-modifying therapies in amyotrophic lateral sclerosis
    Chio, Adriano
    Mazzini, Letizia
    Mora, Gabriele
    [J]. NEUROPHARMACOLOGY, 2020, 167
  • [8] Prognostic factors in ALS: A critical review
    Chio, Adriano
    Logroscino, Giancarlo
    Hardiman, Orla
    Swingler, Robert
    Mitchell, Douglas
    Beghi, Ettore
    Traynor, Bryan G.
    [J]. AMYOTROPHIC LATERAL SCLEROSIS, 2009, 10 (5-6): : 310 - 323
  • [9] Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.7326/M14-0698]
  • [10] Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency
    Cutillo, Christine M.
    Sharma, Karlie R.
    Foschini, Luca
    Kundu, Shinjini
    Mackintosh, Maxine
    Mandl, Kenneth D.
    Beck, Tyler
    Collier, Elaine
    Colvis, Christine
    Gersing, Kenneth
    Gordon, Valery
    Jensen, Roxanne
    Shabestari, Behrouz
    Southall, Noel
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)