Uniqueness of non-negative solutions to an integral equation of the Choquard type

被引:1
作者
Phuong Le [1 ,2 ]
机构
[1] Univ Econ & Law, Fac Econ Math, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
Integral equation; Choquard equation; Liouville theorem; classification of solutions; uniqueness of solutions; POSITIVE SOLUTIONS; LIOUVILLE THEOREMS; CLASSIFICATION; REGULARITY;
D O I
10.1080/00036811.2022.2101452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u is an element of L-loc(2n(p-1)/alpha/beta) (R-n) be a non-negative solution of the integral equation u(x) = integral(Rn) u(p-1)(y)/vertical bar x-y vertical bar(n-alpha) integral(Rn)u(p)(Z)/vertical bar y-z vertical bar(n-beta) dz dy, x is an element of R-n, where 0 < alpha,beta < n and p >= 2. We prove that u 0 if 2n/2n-alpha-beta < p < and n+beta/n-alpha must assume an explicit form if p = n+beta/n-alpha. As an application, we obtain a similar result for non-negative distributional solutions of the corresponding static Choquard-type equation. The main tool we use is the method of moving planes in integral forms.
引用
收藏
页码:3861 / 3873
页数:13
相关论文
共 30 条
[1]   Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay [J].
Belchior, P. ;
Bueno, H. ;
Miyagaki, O. H. ;
Pereira, G. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 :38-53
[2]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[3]   Some Liouville theorems for the fractional Laplacian [J].
Chen, Wenxiong ;
D'Ambrosio, Lorenzo ;
Li, Yan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :370-381
[4]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[5]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[6]   CLASSIFICATION OF NONNEGATIVE SOLUTIONS TO STATIC SCHRODINGER-HARTREE-MAXWELL TYPE EQUATIONS [J].
Dai, Wei ;
Liu, Zhao ;
Qin, Guolin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) :1379-1410
[7]   REGULARITY AND CLASSIFICATION OF SOLUTIONS TO STATIC HARTREE EQUATIONS INVOLVING FRACTIONAL LAPLACIANS [J].
Dai, Wei ;
Huang, Jiahui ;
Qin, Yu ;
Wang, Bo ;
Fang, Yanqin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1389-1403
[8]   A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality [J].
Gao, Fashun ;
Yang, Minbo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
[9]   Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent [J].
Guo, Lun ;
Hu, Tingxi ;
Peng, Shuangjie ;
Shuai, Wei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
[10]  
Kulczycki T., 1997, Probability and Mathematical Statistics, V17, P339