Integrable Whole-body Orientation Coordinates for Legged Robots

被引:2
作者
Chen, Yu-Ming [1 ,3 ]
Nelson, Gabriel [2 ,3 ]
Griffin, Robert [4 ]
Posa, Michael [1 ]
Pratt, Jerry [3 ,4 ]
机构
[1] Univ Penn, Gen Robot Automat Sensing & Percept GRASP Lab, Philadelphia, PA 19104 USA
[2] Boston Dynam Artificial Intelligence Inst, 145 Broadway, Cambridge, MA 02142 USA
[3] Boardwalk Robot, 417 E Zaragoza St, Pensacola, FL 32502 USA
[4] Florida Inst Human & Machine Cognit IHMC, 40 S Alcaniz St, Pensacola, FL 32502 USA
来源
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2023年
关键词
LOCOMOTION; DYNAMICS;
D O I
10.1109/IROS55552.2023.10341531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Complex multibody legged robots can have complex rotational control challenges. In this paper, we propose a concise way to understand and formulate a whole-body orientation that (i) depends on system configuration only and not a history of motion, (ii) can be representative of the orientation of the entire system while not being attached to any specific link, and (iii) has a rate of change that approximates total system angular momentum. We relate this orientation coordinate to past work, and discuss and demonstrate, including on hardware, several different uses for it.
引用
收藏
页码:10440 / 10447
页数:8
相关论文
共 29 条
[1]  
[Anonymous], NAD HUM
[2]  
Batke R., 2022, ARXIV220704163
[3]  
Bledt G, 2018, IEEE INT C INT ROBOT, P2245, DOI 10.1109/IROS.2018.8593885
[4]  
Chen YM, 2020, IEEE INT CONF ROBOT, P8753, DOI [10.1109/icra40945.2020.9197004, 10.1109/ICRA40945.2020.9197004]
[5]  
Dai HK, 2014, IEEE-RAS INT C HUMAN, P295, DOI 10.1109/HUMANOIDS.2014.7041375
[6]   Meaningful Centroidal Frame Orientation of Multi-body Floating Locomotion Systems [J].
Du, Wenqian ;
Wang, Ze ;
Moullet, Etienne ;
Benamar, Faiz .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :3061-3067
[7]  
Erez T, 2012, IEEE INT C INT ROBOT, P4914, DOI 10.1109/IROS.2012.6386181
[8]  
Hatton RL, 2015, EUR PHYS J-SPEC TOP, V224, P3141, DOI [10.1140/epjst/e2015-50085-y, 10.1140/epjst/e2015-02543-3]
[9]   Geometric motion planning: The local connection, Stokes' theorem, and the importance of coordinate choice [J].
Hatton, Ross L. ;
Choset, Howie .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (08) :988-1014
[10]  
Hutter Marco., 2013, Robotics, P129