High-power density, single plasmon, terahertz quantum cascade lasers via transverse mode control

被引:0
|
作者
Song, C. [1 ]
Salih, M. [2 ]
Li, L. H. [2 ]
Mangeney, J. [1 ]
Tignon, J. [1 ]
Davies, A. G. [2 ]
Linfield, E. H. [2 ]
Dhillon, S. [1 ]
机构
[1] Sorbonne Univ, Univ Paris Cite, CNRS, Lab Phys,ENS,Univ PSL, F-75005 Paris, France
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1109/IRMMW-THz57677.2023.10298954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz (THz) quantum cascade lasers (QCLs) have been shown to emit peak powers greater than 1 W from a single facet in a single plasmon geometry. However, this is typically achieved by increasing the laser ridge width, resulting in higher-order transverse modes, limiting the achievable power density. Here we control and fully suppress these modes through thin metallic side-absorbers, showing laser action solely on the fundamental transverse mode operation without sacrificing high THz peak powers. This leads to enhanced power densities and electric fields of up to 1.8 kW/cm(2) and 1.17 kV/cm, respectively, opening up the possibility of applying THz QCLs as pump sources for investigations of non-linear THz physical phenomena.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Single-Mode Surface Emitting Terahertz Quantum Cascade Lasers
    Li, Y. Y.
    Zhao, F. Y.
    Liu, J. Q.
    Liu, F. Q.
    Zhang, J. C.
    Zhuo, N.
    Zhai, S. Q.
    Wang, L. J.
    Liu, S. M.
    Wang, Z. G.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (11) : 7554 - 7556
  • [32] Optical mode control of surface-plasmon quantum cascade lasers
    Moreau, V.
    Bahriz, M.
    Palomo, J.
    Wilson, L. R.
    Krysa, A. B.
    Sirtori, C.
    Austin, D. A.
    Cockburn, J. W.
    Roberts, J. S.
    Colombelli, R.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (21-24) : 2499 - 2501
  • [33] Optical mode control of surface-plasmon quantum cascade lasers
    Moreau, V.
    Bahriz, M.
    Palomo, J.
    Wilson, L. R.
    Krysa, A. B.
    Sirtori, C.
    Austin, D. A.
    Cockburn, J. W.
    Roberts, J. S.
    Colombelli, R.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 507 - +
  • [34] High-power single-transverse-mode ridge optical waveguide semiconductor lasers
    Popovichev, VV
    Davydova, EI
    Marmalyuk, AA
    Simakov, A
    Uspenskii, MB
    Chel'nyi, AA
    Bogatov, AP
    Drakin, AE
    Plisyuk, SA
    Sratonnikov, AA
    QUANTUM ELECTRONICS, 2002, 32 (12) : 1099 - 1104
  • [35] Suppression of pointing instability in quantum cascade lasers by transverse mode control
    Bouzi, Pierre M.
    Liu, Peter Q.
    Aung, Nyan
    Wang, Xiaojun
    Fan, Jen-Yu
    Troccoli, Mariano
    Gmachl, Claire F.
    APPLIED PHYSICS LETTERS, 2013, 102 (12)
  • [36] High-power distributed-feedback quantum cascade lasers
    Bewley, W. W.
    Vurgaftman, I.
    Kim, C. S.
    Meyer, J. R.
    Nguyen, J.
    Evans, A. J.
    Yu, J. S.
    Darvish, S. R.
    Slivken, S.
    Razeghi, M.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES III, 2006, 6127
  • [37] High-power short-wavelength quantum cascade lasers
    Masselink, WT
    Semtsiv, MP
    Dressler, S
    Ziegler, M
    Georgiev, N
    Dekorsy, T
    Helm, M
    Novel In-Plane Semiconductor Lasers IV, 2005, 5738 : 13 - 24
  • [38] High-power continuous-wave quantum cascade lasers
    Faist, J
    Tredicucci, A
    Capasso, F
    Sirtori, C
    Sivco, DL
    Baillargeon, JN
    Hutchinson, AL
    Cho, AY
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1998, 34 (02) : 336 - 343
  • [39] Surface plasmon photonic structures in terahertz quantum cascade lasers
    Demichel, Olivier
    Mahler, Lukas
    Losco, Tonia
    Mauro, Cosimo
    Green, Richard
    Xu, Jihua
    Tredicucci, Alessandro
    Beltram, Fabio
    Beere, Harvey E.
    Ritchie, David A.
    Tamosiunas, Vincas
    OPTICS EXPRESS, 2006, 14 (12) : 5335 - 5345
  • [40] Single mode terahertz quantum cascade lasers based on distributed Bragg reflector
    Bai, Hong-Zhou
    Zang, Shan-Zhi
    Tan, Cheng
    Wang, Kai
    Gan, Liang-Hua
    Xu, Gang-Yi
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2023, 42 (06) : 796 - 806