Prime divisors and the number of conjugacy classes of finite groups

被引:3
|
作者
Keller, Thomas Michael [1 ]
Moreto, A. L. E. X. A. N. D. E. R. [2 ]
机构
[1] Texas State Univ, Dept Math, 601 Univ Dr, San Marcos, TX 78666 USA
[2] Univ Valencia, Dept Matematiques, Burjassot 46100, Valencia, Spain
基金
英国工程与自然科学研究理事会;
关键词
20E45; 20C15; 20C20; 20D25; CLASSIFICATION;
D O I
10.1017/S030500412300035X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least Dp/ log2 p. We conjecture that we can take D =1 and prove that for solvable groups, we can take D = 1/3.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条