Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative

被引:11
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ,5 ]
Al-Shbeil, Isra [6 ]
Xin, Qin [7 ]
Tchier, Fairouz [8 ]
Khan, Shahid [9 ]
Malik, Sarfraz Nawaz [10 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, Baku AZ1007, Azerbaijan
[5] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[6] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[7] Univ Faroe Isl, Fac Sci & Technol, Vestarabryggja 15,FO 100 Torshavn, Faroe Isl, Denmark
[8] King Saud Univ, Coll Sci, Math Dept, POB 22452, Riyadh 11495, Saudi Arabia
[9] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22500, Pakistan
[10] COMSATS Univ Islamabad, Dept Math, Wah Campus, Wah Cantt 47040, Pakistan
关键词
quantum (or q-) calculus; analytic functions; q-derivative operator; bi-univalent functions; Faber polynomial expansions; SUBCLASSES; CALCULUS;
D O I
10.3390/axioms12060585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex functions, we define a new subclass of A, where the class A contains normalized analytic functions in the open unit disk E and is invariant or symmetric under rotation. First, using the Faber polynomial expansion (FPE) technique, we determine the lth coefficient bound for the functions contained within this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions defined by the q-fractional derivative. We also emphasize upon a few well-known outcomes of the major findings in this article.
引用
收藏
页数:19
相关论文
共 62 条
[1]   Boundary Value Problems for q-Difference Inclusions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[2]  
Airault H., 2007, Groups and Symmetries: From Neolithic Scots to John McKay
[3]   On Harmonic Meromorphic Functions Associated with Basic Hypergeometric Functions [J].
Al Dweby, Huda ;
Darus, Maslina .
SCIENTIFIC WORLD JOURNAL, 2013,
[4]   Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions [J].
Al-shbeil, Isra ;
Khan, Nazar ;
Tchier, Fairouz ;
Xin, Qin ;
Malik, Sarfraz Nawaz ;
Khan, Shahid .
AXIOMS, 2023, 12 (04)
[5]   Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials [J].
Al-Shbeil, Isra ;
Catas, Adriana ;
Srivastava, Hari Mohan ;
Aloraini, Najla .
AXIOMS, 2023, 12 (01)
[6]   Majorization Results Based upon the Bernardi Integral Operator [J].
Al-Shbeil, Isra ;
Srivastava, Hari Mohan ;
Arif, Muhammad ;
Haq, Mirajul ;
Khan, Nazar ;
Khan, Bilal .
SYMMETRY-BASEL, 2022, 14 (07)
[7]   Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator [J].
Al-Shbeil, Isra ;
Shaba, Timilehin Gideon ;
Catas, Adriana .
FRACTAL AND FRACTIONAL, 2022, 6 (04)
[8]  
Aldweby H., 2013, ISRN Math., V2013, DOI [10.1155/2013/382312, DOI 10.1155/2013/382312]
[9]   Functions which map the interior of the unit circle upon simple regions. [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1915, 17 :12-22
[10]   Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Salagean-Erdely-Kober Operator [J].
Alharbi, Asma ;
Murugusundaramoorthy, Gangadharan ;
El-Deeb, Sheza. M. .
MATHEMATICS, 2022, 10 (13)