Impact of Ti and Zn Dual-Substitution in P2 Type Na2/3Ni1/3Mn2/3O2 on Ni-Mn and Na-Vacancy Ordering and Electrochemical Properties

被引:89
作者
Kubota, Kei [1 ,2 ]
Asari, Takuya [1 ]
Komaba, Shinichi [1 ]
机构
[1] Tokyo Univ Sci, Dept Appl Chem, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan
[2] Natl Inst Mat Sci NIMS, Res Ctr Energy & Environm Mat GREEN, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
日本科学技术振兴机构;
关键词
cathode materials; intercalation; layered oxides; sodium batteries; structural analysis; substitution; superstructure; LAYERED OXIDE CATHODES; 3-DIMENSIONAL VISUALIZATION; ION; P2-TYPE; PHASE; ELECTRODE; WATER; T2; O2;
D O I
10.1002/adma.202300714
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy layered oxide materials containing various metals that exhibit smooth voltage curves and excellent electrochemical performances have attracted attention in the development of positive electrode materials for sodium-ion batteries. However, a smooth voltage curve can be obtained by suppression of the Na+-vacancy ordering, and therefore, transition metal slabs do not need to be more multi-element than necessary. Here, the Na+-vacancy ordering is found to be disturbed by dual substitution of Ti-IV for Mn-IV and Zn-II for Ni-II in P2-Na-2/3[Ni1/3Mn2/3]O-2. Dual-substituted Na-2/3[Ni1/4Mn1/2Ti1/6Zn1/12]O-2 demonstrates almost non-step voltage curves with a reversible capacity of 114 mAh g(-1) and less structural changes with a high crystalline structure maintained during charging and discharging. Synchrotron X-ray, neutron, and electron diffraction measurements reveal that dual-substitution with Ti-IV and Zn-II uniquely promotes in-plane Ni-II-Mn-IV ordering, which is quite different from the disordered mixing in conventional multiple metal substitution.
引用
收藏
页数:12
相关论文
共 52 条
[1]   REMEASUREMENT OF STRUCTURE OF HEXAGONAL ZNO [J].
ABRAHAMS, SC ;
BERNSTEIN, JL .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1969, B 25 :1233-+
[2]  
[Anonymous], 2011, RIGAKU J, V27, P32
[3]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[4]   Negligible voltage hysteresis with strong anionic redox in conventional battery electrode [J].
Dai, Kehua ;
Mao, Jing ;
Zhuo, Zengqing ;
Feng, Yan ;
Mao, Wenfeng ;
Ai, Guo ;
Pan, Feng ;
Chuang, Yi-de ;
Liu, Gao ;
Yang, Wanli .
NANO ENERGY, 2020, 74
[5]  
DELMAS C, 1982, REV CHIM MINER, V19, P343
[6]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[7]   Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Xiao, Dongdong ;
Rong, Xiaohui ;
Wang, Haibo ;
Li, Yuqi ;
Yang, Yang ;
Lu, Yaxiang ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (18) :8286-8295
[8]  
Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/NMAT3478, 10.1038/nmat3478]
[9]   Environmentally stable interface of layered oxide cathodes for sodium-ion batteries [J].
Guo, Shaohua ;
Li, Qi ;
Liu, Pan ;
Chen, Mingwei ;
Zhou, Haoshen .
NATURE COMMUNICATIONS, 2017, 8
[10]   On Disrupting the Na+-Ion/Vacancy Ordering in P2-Type Sodium-Manganese-Nickel Oxide Cathodes for Na+-Ion Batteries [J].
Gutierrez, Arturo ;
Dose, Wesley M. ;
Borkiewicz, Olaf ;
Guo, Fangmin ;
Avdeev, Maxim ;
Kim, Soojeong ;
Fister, Timothy T. ;
Ren, Yang ;
Bareno, Javier ;
Johnson, Christopher S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41) :23251-23260