Crystal structure and chemical bond characteristics for Li2Zn2(MoO4)3 microwave dielectric ceramics for ULTCC application

被引:3
|
作者
Chen, Xin [1 ]
Qing, Zhenjun [1 ,2 ]
Yang, Ludan [1 ]
Wang, Long [1 ]
Liu, Weichun [1 ]
Sun, Yuxin [3 ]
机构
[1] Shaoyang Univ, Sch Informat Sci & Engn, Shaoyang 422000, Peoples R China
[2] Shaoyang Univ, Prov Key Lab Informat Serv Rural Area Southwestern, Shaoyang 422000, Peoples R China
[3] Sci & Technol Electroopt Informat Secur Control La, Tianjin 300308, Peoples R China
关键词
Rietveld refinement; ULTCC; Crystal structure; Li2Zn2(MoO4)(3); P-V-L theory; ELECTRONEGATIVITY; IONICITY; GD; YB; SM; ND; LN; ER;
D O I
10.1016/j.materresbull.2024.112729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li2Zn2(MoO4)(3) (LZMO) ceramics were prepared via solid-state method. XRD analysis showed LZMO phase had an orthorhombic structure with Pnma space group, representing the only crystalline phase. Ceramic sintered at 600 degrees C exhibited high relative density (96.2 %) and dense microstructure, demonstrating optimal microwave dielectric properties: epsilon(r) = 10.38, Q x f = 69,400 GHz, and tau(f) = -72.81 ppm/degrees C. Further investigations revealed close correlation between epsilon(r) and polarizability, emphasizing greater influence of relative density on Q x f than packing fraction. Increase in distortion of [Li/ZnO6] octahedra resulted in deterioration of ceramics' tau(f). Computation based on P-V-L theory revealed significant impact of ionicity, lattice energy, and bond energy on epsilon(r), Q x f, and tau(f), with Mo-O bonding dominating ceramics' microwave dielectric properties. Raman spectroscopy analysis showed majority of Raman bands attributed to vibrational modes of Mo-O bonds. LZMO ceramics have great potential in ULTCC field.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] MICROWAVE DIELECTRIC STUDY ON CSDY(MOO4)2
    TRYBULA, M
    STANKOWSKI, J
    TRYBULA, Z
    ZVYAGIN, AI
    FERROELECTRICS, 1988, 81 : 1033 - 1036
  • [32] Crystal structure and magnetic properties of Li,Cr-containing molybdates Li3Cr(MoO4)3, LiCr(MoO4)2 and Li1.8Cr1.2(MoO4)3
    Sarapulova, A.
    Mikhailova, D.
    Senyshyn, A.
    Ehrenberg, H.
    JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (12) : 3262 - 3268
  • [33] Phase formation in the Li2MoO4-Rb2MoO4-Fe2(MoO4)3 system and crystal structure of a novel triple molybdate LiRb2Fe(MoO4)3
    Khal'baeva, Klara M.
    Solodovnikov, Sergey F.
    Khaikina, Elena G.
    Kadyrova, Yuliya M.
    Solodovnikova, Zoya A.
    Basovich, Olga M.
    JOURNAL OF SOLID STATE CHEMISTRY, 2013, 203 : 227 - 231
  • [34] Studies of the spin-Hamiltonian parameters for Mo5+ ions in double molybdate Li2Zn2(MoO4)3 crystal annealed in a CO2 atmosphere
    Li, Bang-Xing
    Feng, Wen-Lin
    Su, Ping
    OPTIK, 2015, 126 (20): : 2700 - 2702
  • [35] Phase equilibria in the Tl2MoO4-Pr2(MoO4)3-Hf(MoO4)2 system and crystal structure of TlPr(MoO4)2
    Grossman, V. G.
    Bazarov, B. G.
    Glinskaya, L. A.
    Bazarova, Zh G.
    INORGANIC MATERIALS, 2013, 49 (12) : 1224 - 1226
  • [36] Phase equilibria in the Tl2MoO4-Pr2(MoO4)3-Hf(MoO4)2 system and crystal structure of TlPr(MoO4)2
    V. G. Grossman
    B. G. Bazarov
    L. A. Glinskaya
    Zh. G. Bazarova
    Inorganic Materials, 2013, 49 : 1224 - 1226
  • [37] Growth and spectroscopic characteristics of Li2Mg2(MoO4)3 and Li2Mg2(MoO4)3:Co2+ crystals
    V. A. Trifonov
    A. A. Pavlyuk
    K. N. Gorbachenya
    A. S. Yasyukevich
    N. V. Kuleshov
    Inorganic Materials, 2013, 49 : 517 - 519
  • [38] Phase formation in the Li2MoO4-Rb2MoO4-Li-2(MoO4)(3) systems and the properties of LiRbLn(2)(MoO4)(4)
    Basovich, OM
    Khaikina, EG
    Vasilev, EV
    Frolov, AM
    ZHURNAL NEORGANICHESKOI KHIMII, 1995, 40 (12): : 2047 - 2051
  • [39] Growth and spectroscopic characteristics of Li2Mg2(MoO4)3 and Li2Mg2(MoO4)3:Co2+ crystals
    Trifonov, V. A.
    Pavlyuk, A. A.
    Gorbachenya, K. N.
    Yasyukevich, A. S.
    Kuleshov, N. V.
    INORGANIC MATERIALS, 2013, 49 (05) : 517 - 519
  • [40] Subsolidus structure of the Li2MoO4-Tl2MoO4-Bi2(MoO4)3 system
    Khal'baeva, KM
    Khaikina, EG
    ZHURNAL NEORGANICHESKOI KHIMII, 2000, 45 (02): : 314 - 319