Anion-Reinforced Solvating Ionic Liquid Electrolytes Enabling Stable High-Nickel Cathode in Lithium-Metal Batteries

被引:21
|
作者
Zou, Wenhong [1 ]
Zhang, Jun [1 ]
Liu, Mengying [1 ]
Li, Jidao [1 ]
Ren, Zejia [1 ]
Zhao, Wenlong [1 ,3 ]
Zhang, Yanyan [1 ]
Shen, Yanbin [3 ]
Tang, Yuxin [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
[2] Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nano Bion, CAS Ctr Excellence Nanosci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
anion reinforced; high energy density; ionic liquids; lithium-metal batteries;
D O I
10.1002/adma.202400537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic liquid electrolytes (ILEs) are promising to develop high-safety and high-energy-density lithium-metal batteries (LMBs). Unfortunately, ILEs normally face the challenge of sluggish Li+ transport due to increased ions' clustering caused by Coulombic interactions. Here a type of anion-reinforced solvating ILEs (ASILEs) is discovered, which reduce ions' clustering by enhancing the anion-cation coordination and promoting more anions to enter the internal solvation sheath of Li+ to address this concern. The designed ASILEs, incorporating chlorinated hydrocarbons and two anions, bis(fluorosulfonyl) imide (FSI-) and bis(trifluoromethanesulfonyl) imide (TFSI-), aim to enhance Li+ transport ability, stabilize the interface of the high-nickel cathode material (LiNi0.8Co0.1Mn0.1O2, NCM811), and retain fire-retardant properties. With these ASILEs, the Li/NCM811 cell exhibits high initial specific capacity (203 mAh g-1 at 0.1 C), outstanding capacity retention (81.6% over 500 cycles at 1.0 C), and excellent average Coulombic efficiency (99.9% over 500 cycles at 1.0 C). Furthermore, an Ah-level Li/NCM811 pouch cell achieves a notable energy density of 386 Wh kg-1, indicating the practical feasibility of this electrolyte. This research offers a practical solution and fundamental guidance for the rational design of advanced ILEs, enabling the development of high-safety and high-energy-density LMBs. An anion-reinforced solvating ionic liquid electrolyte is developed to enhance the anion-cation coordination and promote more anions to enter the internal solvation sheath of Li+. This new type of ionic liquid electrolyte improves Li+ transport ability and stabilizes the interface between the electrolyte and high-nickel cathode, rendering the practical application toward high-safety and high-energy-density lithium-metal batteries. image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries
    Zhou, Tianhong
    Zhao, Yan
    Choi, Jang Wook
    Coskun, Ali
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) : 22791 - 22796
  • [22] Solvation and interfacial chemistry in ionic liquid based electrolytes toward rechargeable lithium-metal batteries
    Tu, Haifeng
    Peng, Keyang
    Xue, Jiangyan
    Xu, Jingjing
    Zhao, Jiawei
    Guo, Yuyue
    Lu, Suwan
    Wang, Zhicheng
    Chen, Liquan
    Li, Hong
    Wu, Xiaodong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (48) : 33362 - 33391
  • [23] Interfacial Stabilizing Effect of Lithium Borates and Pyrrolidinium Ionic Liquid in Gel Polymer Electrolytes for Lithium-Metal Batteries
    Swiderska-Mocek, Agnieszka
    Gabryelczyk, Agnieszka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (38): : 18875 - 18890
  • [24] Ethylene Carbonate-Free Electrolytes for Stable, Safer High-Nickel Lithium-Ion Batteries
    Pan, Ruijun
    Cui, Zehao
    Yi, Michael
    Xie, Qiang
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2022, 12 (19)
  • [25] Local superconcentration via solvating ionic liquid electrolytes for safe 4.3V lithium metal batteries
    Atik, Jaschar
    Winter, Martin
    Paillard, Elie
    ELECTROCHIMICA ACTA, 2022, 415
  • [26] An ionic liquid enhanced gel polymer electrolyte for high performance lithium-metal batteries based on sulfurized polyacrylonitrile cathode
    Gao, Guixia
    Wang, Jin
    Zhang, Xuezhi
    Li, Huilan
    Wang, Lina
    Liu, Tianxi
    COMPOSITES COMMUNICATIONS, 2022, 31
  • [27] Dual-anion ionic liquid electrolytes: a strategy for achieving high stability and conductivity in lithium metal batteries
    Lee, Jemin
    Choi, Wonwoo
    Jang, Eunbin
    Kim, Hyunjin
    Yoo, Jeeyoung
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [28] Locally Concentrated Ionic Liquid Electrolytes Enabling Low-Temperature Lithium Metal Batteries
    Liu, Xu
    Mariani, Alessandro
    Diemant, Thomas
    Dong, Xu
    Su, Po-Hua
    Passerini, Stefano
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (31)
  • [29] Enabling Long Cycling with Excellent Structure Stability for High-Nickel Layered Cathodes in Lithium Metal Batteries
    Xin, Fengxia
    Goel, Anshika
    Zhou, Hui
    Whittingham, M. Stanley
    ACS MATERIALS LETTERS, 2023, 5 (07): : 1969 - 1973
  • [30] Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries
    Mendes, Tiago C.
    Goujon, Nicolas
    Malic, Nino
    Postma, Almar
    Chiefari, John
    Zhu, Haijin
    Howlett, Patrick C.
    Forsyth, Maria
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)