Restrained and Total Restrained Domination of Ladder Graphs

被引:0
作者
Hemalatha, N. C. [1 ]
Chandrakala, S. B. [2 ]
Sooryanarayana, B. [3 ]
Kumar, M. Vishu [4 ]
机构
[1] Oxford Coll Engn, Dept Math, Bengaluru, Karnataka, India
[2] Nitte Meenakshi Inst Technol, Dept Math, Bengaluru, Karnataka, India
[3] Dr Ambedkar Inst Technol, Dept Math, Bengaluru, Karnataka, India
[4] REVA Univ, Dept Math, Bengaluru, Karnataka, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2023年 / 14卷 / 04期
关键词
Domination; Total domination; Restrained domination; NUMBER;
D O I
10.26713/cma.v14i4.2569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Telle and Proskurowksi introduced restrained domination as a vertex partition problem in partial k-tress (Algorithms for vertex partitioning problems on partial k-trees, SIAM Journal on Discrete Mathematics 10(4) (1997), 529 - 550). For a graph G(V,E), a restrained domination number is the minimum cardinality of a subset of V such that for every vertex v is an element of over bar there is a vertex in as well as in over bar adjacent to v. If satisfies an additional condition that every vertex of V has a neighbor in , then is said to be a total restrained dominating set. Minimum cardinality of is restrained, total and total restrained domination number of some ladder graphs.
引用
收藏
页码:1311 / 1323
页数:13
相关论文
共 16 条
  • [1] TOTAL DOMINATION IN GRAPHS
    COCKAYNE, EJ
    DAWES, RM
    HEDETNIEMI, ST
    [J]. NETWORKS, 1980, 10 (03) : 211 - 219
  • [2] Cyman J, 2006, AUSTRALAS J COMB, V36, P91
  • [3] Restrained domination in graphs
    Domke, GS
    Hattingh, JH
    Hedetniemi, ST
    Laskar, RC
    Markus, LR
    [J]. DISCRETE MATHEMATICS, 1999, 203 (1-3) : 61 - 69
  • [4] Restrained domination in trees
    Domke, GS
    Hattingh, JH
    Henning, MA
    Markus, LR
    [J]. DISCRETE MATHEMATICS, 2000, 211 (1-3) : 1 - 9
  • [5] Bounds on the Total Restrained Domination Number of a Graph
    Hattingh, J. H.
    Jonck, E.
    Joubert, E. J.
    [J]. GRAPHS AND COMBINATORICS, 2010, 26 (01) : 77 - 93
  • [6] Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs
    Hattingh, Johannes H.
    Jonck, Elizabeth
    Joubert, Ernst J.
    Plummer, Andrew R.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (07) : 1080 - 1087
  • [7] Total restrained domination in trees
    Hattingh, Johannes H.
    Jonck, Elizabeth
    Joubert, Ernst J.
    Plummer, Andrew R.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (13) : 1643 - 1650
  • [8] Restrained domination in cubic graphs
    Hattingh, Johannes H.
    Joubert, Ernst J.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 166 - 179
  • [9] Restrained Domination in Claw-Free Graphs with Minimum Degree at Least Two
    Hattingh, Johannes H.
    Joubert, Ernst J.
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (05) : 693 - 706
  • [10] Hattingh JH, 2010, ARS COMBINATORIA, V94, P477