Interpretable machine learning model for prediction of overall survival in laryngeal cancer

被引:4
作者
Alabi, Rasheed Omobolaji [1 ,2 ]
Almangush, Alhadi [1 ,3 ,4 ]
Elmusrati, Mohammed [2 ]
Leivo, Ilmo [4 ]
Makitie, Antti A. [1 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Univ Helsinki, Res Program Syst Oncol, Helsinki, Finland
[2] Univ Vaasa, Sch Technol & Innovat, Dept Ind Digitalizat, Vaasa, Finland
[3] Univ Helsinki, Dept Pathol, Helsinki, Finland
[4] Univ Turku, Inst Biomed, Pathol, Turku, Finland
[5] Univ Helsinki, Dept Otorhinolaryngol Head & Neck Surg, Helsinki, Finland
[6] Helsinki Univ Hosp, Helsinki, Finland
[7] Karolinska Inst, Dept Clin Sci Intervent & Technol, Div Ear Nose & Throat Dis, Stockholm, Sweden
[8] Karolinska Univ Hosp, Stockholm, Sweden
[9] Helsinki Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, POB263, Helsinki 00029, Finland
关键词
Machine learning; deep learning; DeepTables; laryngeal cancer; laryngeal squamous cell carcinoma; XGBoost; voting ensemble; stacked ensemble; sEER; overall survival;
D O I
10.1080/00016489.2023.2301648
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Background: The mortality rates of laryngeal squamous cell carcinoma cancer (LSCC) have not significantly decreased in the last decades. Objectives: We primarily aimed to compare the predictive performance of DeepTables with the state-of-the-art machine learning (ML) algorithms (Voting ensemble, Stack ensemble, and XGBoost) to stratify patients with LSCC into chance of overall survival (OS). In addition, we complemented the developed model by providing interpretability using both global and local model-agnostic techniques. Methods: A total of 2792 patients in the Surveillance, Epidemiology, and End Results (SEER) database diagnosed with LSCC were reviewed. The global model-agnostic interpretability was examined using SHapley Additive exPlanations (SHAP) technique. Likewise, individual interpretation of the prediction was made using Local Interpretable Model Agnostic Explanations (LIME). Results: The state-of-the-art ML ensemble algorithms outperformed DeepTables. Specifically, the examined ensemble algorithms showed comparable weighted area under receiving curve of 76.9, 76.8, and 76.1 with an accuracy of 71.2%, 70.2%, and 71.8%, respectively. The global methods of interpretability (SHAP) demonstrated that the age of the patient at diagnosis, N-stage, T-stage, tumor grade, and marital status are among the prominent parameters. Conclusions: A ML model for OS prediction may serve as an ancillary tool for treatment planning of LSCC patients.
引用
收藏
页码:256 / 262
页数:7
相关论文
共 20 条
[1]   Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi ;
Maekitie, Antti A. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Application of artificial intelligence for overall survival risk stratification in oropharyngeal carcinoma: A validation of ProgTOOL [J].
Alabi, Rasheed Omobolaji ;
Sjoblom, Anni ;
Carpen, Timo ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi ;
Makitie, Antti A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 175
[3]   Advanced-stage tongue squamous cell carcinoma: a machine learning model for risk stratification and treatment planning [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi ;
Maekitie, Antti A. .
ACTA OTO-LARYNGOLOGICA, 2023, 143 (03) :206-214
[4]   An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer [J].
Alabi, Rasheed Omobolaji ;
Almangush, Alhadi ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Makitie, Antti A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 168
[5]   Deep Machine Learning for Oral Cancer: From Precise Diagnosis to Precision Medicine [J].
Alabi, Rasheed Omobolaji ;
Almangush, Alhadi ;
Elmusrati, Mohammed ;
Maekitie, Antti A. .
FRONTIERS IN ORAL HEALTH, 2022, 2
[6]   Utilizing Deep Machine Learning for Prognostication of Oral Squamous Cell Carcinoma-A Systematic Review [J].
Alabi, Rasheed Omobolaji ;
Bello, Ibrahim O. ;
Youssef, Omar ;
Elmusrati, Mohammed ;
Makitie, Antti A. A. ;
Almangush, Alhadi .
FRONTIERS IN ORAL HEALTH, 2021, 2
[7]   Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review [J].
Alabi, Rasheed Omobolaji ;
Youssef, Omar ;
Pirinen, Matti ;
Elmusrati, Mohammed ;
Makitie, Antti A. ;
Leivo, Ilmo ;
Almangush, Alhadi .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 115
[8]   Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Makitie, Antti A. ;
Pirinen, Matti ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 145
[9]   Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Sawazaki-Calone, Iris ;
Kowalski, Luiz Paulo ;
Haglund, Caj ;
Coletta, Ricardo D. ;
Makitie, Antti A. ;
Salo, Tuula ;
Leivo, Ilmo ;
Almangush, Alhadi .
VIRCHOWS ARCHIV, 2019, 475 (04) :489-497
[10]   Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Sawazaki-Calone, Iris ;
Kowalski, Luiz Paulo ;
Haglund, Caj ;
Coletta, Ricardo D. ;
Makitie, Antti A. ;
Salo, Tuula ;
Almangush, Alhadi ;
Leivo, Ilmo .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 136