Enhanced Measurement of Vortex Beam Rotation Using Polarization-Assisted Particle Swarm Optimization for Phase Retrieval

被引:5
|
作者
Wang, Hongyang [1 ]
Zhang, Zijing [1 ]
Wang, Qingfeng [2 ,3 ]
Feng, Rui [1 ]
Zhao, Yuan [1 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] Shanghai Acad Spaceflight Technol, Shanghai 200240, Peoples R China
[3] Infrared Detect Technol Res & Dev Ctr CASC, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
rotational Doppler effect; velocity measurement accuracy; phase retrieval algorithm; PSO (particle swarm optimization); Stokes polarization; ORBITAL ANGULAR-MOMENTUM; SPACE OPTICAL COMMUNICATION; TURBULENCE COMPENSATION; ALGORITHM; LIGHT; WAVE;
D O I
10.3390/photonics10121293
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In detecting the rotation velocity of an object employing the rotational Doppler effect of vortex beams, atmospheric turbulence can easily cause phase distortion and spiral spectrum dispersion, consequently reducing velocity measurement accuracy. This study combines adaptive optical intelligence algorithms with polarization compensation information to propose a novel approach, the Stokes-Particle swarm optimization Gerchberg-Saxton (Stokes-PSO GS) algorithm, which integrates Stokes polarization information assistance and PSO for GS phase retrieval. The algorithm adjusts the phase and amplitude of the pre-compensated phase screen of the GS algorithm dutilizing Stokes information of polarized vortex beam (with l(L) = 5 and l(R) = 5) before and after distortion. The PSO is then employed to optimize the pre-compensated phase screen and perform compensations. Simulation results at z(S-T) = 200 m and C-n(2) = 1 x 10(-14) m(-2/3), demonstrate that the Stokes-PSO GS algorithm exhibits strong stability (small angular spectrum purity deviation, sigma(p), Stokes-PSO GS = 0.005675% < sigma(p, GS) = 11.62%), superior optical field recovery (well-recovered Stokes optical field, up to 33.76% improvement in angular spectrum purity), and high-velocity measurement accuracy (25.93% improvement) compared to the GS algorithm. This approach enables precise measurement of the rotation velocity of the vortex beam, demonstrating its potential in practical applications.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] Wavefront measurement of vortex beam using ptychographic phase retrieval
    Saito, Takahiro
    Takeo, Yoko
    Mimura, Hidekazu
    UNCONVENTIONAL IMAGING AND WAVEFRONT SENSING XII, 2016, 9982
  • [2] Phase Retrieval Utilizing Particle Swarm Optimization
    Li, Li-Jing
    Liu, Teng-Fei
    Sun, Ming-Jie
    IEEE PHOTONICS JOURNAL, 2018, 10 (01):
  • [3] Spatial phase retrieval of vortex beam using convolutional neural network
    Ding, Ge
    Xiong, Wenjie
    Wang, Peipei
    Huang, Zebin
    He, Yanliang
    Liu, Junmin
    Li, Ying
    Fan, Dianyuan
    Chen, Shuqing
    JOURNAL OF OPTICS, 2022, 24 (02)
  • [4] Phase retrieval of an electron vortex beam using diffraction holography
    Venturi, Federico
    Campanini, Marco
    Gazzadi, Gian Carlo
    Balboni, Roberto
    Frabboni, Stefano
    Boyd, Robert W.
    Dunin-Borkowski, Rafal E.
    Karimi, Ebrahim
    Grillo, Vincenzo
    APPLIED PHYSICS LETTERS, 2017, 111 (22)
  • [5] Error Constraint Enhanced Particle Filter Using Quantum Particle Swarm Optimization
    Wan, Jiawang
    Xu, Cheng
    Qiao, Yidan
    Zhang, Xiaotong
    IEEE SENSORS JOURNAL, 2021, 21 (21) : 24431 - 24439
  • [6] Wide Null Beamforming using Enhanced Particle SWARM Optimization
    Mangoud, M. A.
    Elragal, H. M.
    2009 IEEE 9TH MALAYSIA INTERNATIONAL CONFERENCE ON COMMUNICATIONS (MICC), 2009, : 159 - 162
  • [7] Intelligent skin cancer detection using enhanced particle swarm optimization
    Tan, Teck Yan
    Zhang, Li
    Neoh, Siew Chin
    Lim, Chee Peng
    KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 118 - 135
  • [8] Minimization of Active Power Loss Using Enhanced Particle Swarm Optimization
    Adegoke, Samson Ademola
    Sun, Yanxia
    Wang, Zenghui
    MATHEMATICS, 2023, 11 (17)
  • [9] Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization
    Tan, Teck Yan
    Zhang, Li
    Lim, Chee Peng
    Fielding, Ben
    Yu, Yonghong
    Anderson, Emma
    IEEE ACCESS, 2019, 7 : 34004 - 34019
  • [10] Modelling photovoltaic modules with enhanced accuracy using particle swarm clustered optimization
    Mouncef, El marghichi
    Hilali, Abdelilah
    Loulijat, Azeddine
    Essounaini, Abdelhak
    Chellakhi, Adbelkhalek
    ACTA IMEKO, 2024, 13 (02):