The physics of gain relevant to inertial fusion energy target designs

被引:4
|
作者
Trickey, W. [1 ,2 ]
Goncharov, V. N. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Campbell, E. M. [4 ]
Collins, T. J. B. [1 ,2 ]
Follett, R. K. [1 ,2 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14611 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14624 USA
[4] MCM Consulting, 17117 Tallow Tree Lane, San Diego, CA 97127 USA
关键词
MASS ABLATION RATE; CONFINEMENT FUSION; LASER FUSION; IGNITION;
D O I
10.1063/5.0167405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In inertial confinement fusion, pellets of deuterium tritium fuel are compressed and heated to the conditions where they undergo fusion and release energy. The target gain (ratio of energy released from the fusion reactions to the energy in the drive source) is a key parameter in determining the power flow and economics of an inertial fusion energy (IFE) power plant. In this study, the physics of gain is explored for laser-direct-drive targets with driver energy at the megajoule scale. This analysis is performed with the assumption of next-generation laser technologies that are expected to increase convergent drive pressures to over 200 Mbar. This is possible with the addition of bandwidth to the laser spectrum and by employing focal-spot zooming. Simple physics arguments are used to derive scaling laws that describe target gain as a function of laser energy, adiabat, ablation pressure, and implosion velocity. Scaling laws are found for the unablated mass, ablation pressure, areal density, implosion velocity, and in-flight aspect ratio. Those scaling laws are then used to explore the design space for IFE targets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Target physics for inertial fusion energy
    MartinezVal, JM
    Velarde, G
    Eliezer, S
    CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, 1997, : 43 - 65
  • [2] Energy gain of a thin DT shell target in inertial confinement fusion
    Khoshbinfar, Soheil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2014, 23 (11):
  • [3] Target physics scaling for Z-pinch inertial fusion energy
    Olson, RE
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1147 - 1151
  • [4] The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial
    Rosen, MD
    PHYSICS OF PLASMAS, 1999, 6 (05) : 1690 - 1699
  • [5] ION-BEAM INERTIAL FUSION TARGET DESIGNS
    BANGERTER, R
    MEEKER, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1196 - 1196
  • [6] Target production for inertial fusion energy
    Woodworth, JG
    Meier, WR
    FUSION TECHNOLOGY, 1997, 31 (03): : 280 - 290
  • [7] Principles of inertial confinement fusion - Physics of implosion and the concept of inertial fusion energy
    Nakai, S
    Takabe, H
    REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (09) : 1071 - 1131
  • [8] DEVELOPMENT OF THE INDIRECT-DRIVE APPROACH TO INERTIAL CONFINEMENT FUSION AND THE TARGET PHYSICS BASIS FOR IGNITION AND GAIN
    LINDL, J
    PHYSICS OF PLASMAS, 1995, 2 (11) : 3933 - 4024
  • [9] Demonstrating a target supply for inertial fusion energy
    Goodin, DT
    Alexander, NB
    Brown, LC
    Callahan, DA
    Ebey, PS
    Frey, DT
    Gallix, R
    Geller, DA
    Gibson, CR
    Hoffer, JK
    Maxwell, JL
    McQuillan, BW
    Nikroo, A
    Nobile, A
    Olson, C
    Petzoldt, RW
    Raffray, R
    Rickman, WS
    Rochau, G
    Schroen, DG
    Sethian, J
    Sheliak, JD
    Streit, JE
    Tillack, M
    Vermillion, BA
    Valmianski, EI
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1131 - 1138
  • [10] AUTOMATED TARGET PRODUCTION FOR INERTIAL FUSION ENERGY
    MONSLER, MJ
    MEIER, WR
    FUSION TECHNOLOGY, 1994, 26 (03): : 873 - 880