Enhancement of ductility characteristics of fiber-reinforced ternary geopolymer mortar

被引:9
|
作者
Gaddafi, Adel Kassem Farag [1 ]
Alengaram, U. Johnson [1 ]
Bunnori, Norazura Muhamad [1 ]
Ibrahim, Muhammad S. I. [2 ]
Ibrahim, Shaliza [2 ]
Govindasami, S. [3 ]
机构
[1] Univ Malaya, Fac Engn, Dept Civil Engn, Ctr Innovat Construction Technol CICT, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Inst Ocean & Earth Sci IOES, Kuala Lumpur 50603, Malaysia
[3] Vel Tech High Tech Dr Rangarajan Dr Sakunthala Eng, Dept Civil Engn, Chennai, India
来源
JOURNAL OF BUILDING ENGINEERING | 2024年 / 82卷
关键词
Geopolymer; Micro steel fiber; Polypropylene fiber; Load-deflection capacity; Splitting tensile strength; Flexural toughness; OIL FUEL ASH; RICE HUSK ASH; MECHANICAL-PROPERTIES; HIGH-VOLUME; PERFORMANCE EVALUATION; COMPRESSIVE STRENGTH; FLEXURAL BEHAVIOR; DURABILITY CHARACTERISTICS; ENGINEERING PROPERTIES; LIGHTWEIGHT CONCRETE;
D O I
10.1016/j.jobe.2023.108141
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
There is a need for ambient-cured geopolymer as a potential replacement for conventional ordinary Portland cement (OPC) based concrete. But geopolymers, that belong to the ceramic family, behave in a brittle manner and hence this research focusses on the enhancement of ductility using fibers. Thus, this experimental work was conducted to investigate the performance of polypropylene (PP) and micro steel fiber (MS) of fiber-reinforced geopolymer mortar (FRGM) on the hardened properties. The volume fractions of fiber used were 0%, 0.5%, 1%, and 1.5%. The ternary blended geopolymer mortar consisted of fly ash (FA), ground granular blast furnace slag (GGBS), and palm oil fuel ash (POFA). The hardened properties investigated are compressive strength, splitting tensile strength, modulus of elasticity (MoE), and ultrasonic pulse velocity (UPV). Furthermore, the load-deflection response was investigated in terms of deflection, load, flexural, and toughening mechanisms. The morphology of matrix mortar with the bonding of the fibers was examined through field emission scanning electron microscope (FESEM). The results revealed that the splitting tensile strength was enhanced with the inclusion of 0.5% of PP fibers and up to 1.5% of MS fibers by 27% and 177%, respectively. The enhancements in the ultimate flexural strength with 1.5% fiber were found 173% and 33% higher for MS and PP fibers, respectively compared to the control mixes. The inclusion of both MS and PP fibers showed a significant enhancement in the post-cracking flexural and toughness energy measured at L/150 mm. Furthermore, the addition of fiber volume of 0.5-1.5% enhanced the toughness by 33% (T600), 62% (T150), and 28% (T600), 46% (T150) for MS and PP mixes, respectively.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Novel fiber-reinforced composite materials based on sustainable geopolymer matrix
    Natali, A.
    Manzi, S.
    Bignozzi, M. C.
    2011 INTERNATIONAL CONFERENCE ON GREEN BUILDINGS AND SUSTAINABLE CITIES, 2011, 21 : 1124 - 1131
  • [32] Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite
    Malenab, Roy Alvin J.
    Ngo, Janne Pauline S.
    Promentilla, Michael Angelo B.
    MATERIALS, 2017, 10 (06):
  • [33] A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites
    Camargo, Marfa Molano
    Adefrs Taye, Eyerusalem
    Roether, Judith A.
    Tilahun Redda, Daniel
    Boccaccini, Aldo R.
    MATERIALS, 2020, 13 (20) : 1 - 29
  • [34] Mechanical Properties of Fiber-Reinforced Permeable Geopolymer Concrete
    Xu, Lina
    Liu, Qilong
    Ding, Xu
    Sun, Shuang
    Huang, Zhanfang
    MATERIALS, 2023, 16 (17)
  • [35] PET Fiber-Reinforced Engineered Geopolymer and Cementitious Composites
    Khan, Sadaqat Ullah
    Ayub, Tehmina
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (03)
  • [36] Snow-Proof Roadways Using Steel Fiber-Reinforced Fly Ash Geopolymer Mortar-Concrete
    Yang, Mijia
    Paudel, Shree Raj
    Gao, Zhili Jerry
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (02)
  • [37] Performance of polypropylene fiber-reinforced cellular lightweight fly ash geopolymer mortar under wet and dry cycles
    Yoosuk, Piyathida
    Suksiripattanapong, Cherdsak
    Hiroki, Goda
    Phoo-ngernkham, Tanakorn
    Thumrongvut, Jaksada
    Sukontasukkul, Piti
    Chindaprasirt, Prinya
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [38] Strength and durability characteristics of steel fiber-reinforced geopolymer concrete with addition of waste materials
    Karthiga Shenbagam Natarajan
    Sam Issac Benjamin Yacinth
    Kannan Veerasamy
    Environmental Science and Pollution Research, 2023, 30 : 99026 - 99035
  • [39] Self-Cleaning Performance of Basalt Fiber-Reinforced GGBS-Based Geopolymer Mortar Containing Nano TiO2
    Tanyildizi, Harun
    Yilmaz, Atilla
    Acik, Volkan
    Demirelli, Kadir
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (08)
  • [40] Durability Characteristics of Polypropylene Fiber-Reinforced Waste Cardboard Concrete
    Mahdi, Shahin
    Venkatesan, Srikanth
    Gravina, Rebecca J.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2025, 37 (05)