A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite

被引:28
|
作者
Hussein, Beshir A. [1 ]
Tsegaye, Abebaw A. [2 ]
Shifera, Getabalew [3 ]
M. Taddesse, Abi [4 ]
机构
[1] Mekdela Amba Univ, Dept Chem, POB 32, Mekane Selam, Ethiopia
[2] Bahir Dar Univ, Dept Chem, POB 79, Bahir Dar, Ethiopia
[3] Mettu Univ, Dept Chem, POB 318, Mettu, Ethiopia
[4] Haramaya Univ, Dept Chem, POB 138, Dire Dawa, Ethiopia
来源
SENSORS & DIAGNOSTICS | 2023年 / 2卷 / 02期
关键词
GLASSY-CARBON ELECTRODE; HYDROTHERMAL SYNTHESIS; ELECTROCATALYTIC ACTIVITY; FACILE SYNTHESIS; NANOPARTICLES; ZNO; FABRICATION; NANOFIBERS; PERFORMANCE; COMPOSITE;
D O I
10.1039/d2sd00183g
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel sensitive and selective ZnO/Co3O4/rGO nanocomposite was fabricated using a hydrothermal method and used as a non-enzymatic electrochemical sensor for the detection of glucose. The morphology and structure of the ZnO/Co3O4/rGO composite were characterized using UV-vis spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques. The electrochemical properties of the as-synthesized nanomaterials were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and single potential time base (TB) amperometry. The ZnO/Co3O4/rGO nanocomposite exhibited excellent electrochemical performance with higher catalytic activity, lower working potential (0.55 V), and low charge transfer resistance for the electrochemical oxidation of glucose, which can be attributed to the presence of high conductive reduced graphene oxide sheets on the surface of the electrode. Under optimal conditions, the ZnO/Co3O4/rGO glassy carbon electrode (GCE) modified electrochemical glucose sensor demonstrated a wide linear range (0.015-10 mM), high sensitivity (1551.38 mu A mM(-1) cm(-2)), low detection limit (0.043 mu M) and fast response time (similar to 3 s) to glucose determination. In addition, the ZnO/Co3O4/rGO/GCE sensor was able to detect glucose even in the presence of biologically interfering molecules and chloride ions. The sensor achieved appreciable repeatability, reproducibility, and long-term stability. Moreover, the practical application of the ZnO/Co3O4/rGO/GCE electrochemical sensor is very appropriate for the detection of glucose in real samples for medical diagnostic and food industries, and the results positively agreed with those collected using the spectrophotometric method in the hospital and the glucose label value in food industries.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 50 条
  • [21] Electrochemical non-enzymatic glucose sensors based on nano-composite of Co3O4 and multiwalled carbon nanotube
    Lin, Xiaoyun
    Wang, Yanfang
    Zou, Miaomiao
    Lan, Tianxiang
    Ni, Yongnian
    CHINESE CHEMICAL LETTERS, 2019, 30 (06) : 1157 - 1160
  • [22] Fabrication of Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Ag NPs/Co3O4/ERGO Composite
    Mirzaei, Mohammad
    Behboudnia, Mahdi
    Kheiri, Farshad
    Chianeh, Vahid Abbasi
    Naeim, Haleh
    Jannatdoust, Elham
    Sirousazar, Mohammad
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : B1232 - B1237
  • [23] Non-enzymatic glucose sensor fabricated by CoFe2O4 nanosheets grown on Reduced Graphene Oxide
    Dong, Min
    Hu, Hongli
    Ding, Shujiang
    Duan, Yujie
    Cui, Chenhui
    MATERIALS TECHNOLOGY, 2022, 37 (14) : 3184 - 3193
  • [24] Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture
    Tian, Liangliang
    He, Gege
    Cai, Yanhua
    Wu, Shenping
    Su, Yongyao
    Yan, Hengqing
    Yang, Cong
    Chen, Yanling
    Li, Lu
    NANOTECHNOLOGY, 2018, 29 (07)
  • [25] Fabrication of NiMn2O4 nanosheets on reduced graphene oxide for non-enzymatic detection of glucose
    Dong, Min
    Hu, Hongli
    Ding, Shujiang
    Wang, Changcheng
    Li, Long
    MATERIALS TECHNOLOGY, 2021, 36 (04) : 203 - 211
  • [26] Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite
    Chen, Guozhen
    Zheng, Jianbin
    MICROCHEMICAL JOURNAL, 2021, 164
  • [27] Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor
    Huo, Huanhuan
    Guo, Chunyan
    Li, Guilin
    Han, Xu
    Xu, Cailing
    RSC ADVANCES, 2014, 4 (39) : 20459 - 20465
  • [28] Polyaniline-ZnO-NiO Nanocomposite based Non-enzymatic Electrochemical Sensor for Malathion Detection
    Jikamo, Samuel Chufamo
    Habtemariam, Tesfaye Haile
    Dolla, Tarekegn Heliso
    ELECTROANALYSIS, 2023, 35 (04)
  • [29] Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite
    Ahmad, Rafiq
    Mahmoud, Tahmineh
    Ahn, Min-Sang
    Yoo, Jin-Young
    Hahn, Yoon-Bong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 516 : 67 - 75
  • [30] Evaluation of ITO/TiO2/Co3O4 as a non-enzymatic heterojunction electrode to glucose electrooxidation
    Neto, Nilton Francelosi Azevedo
    de Jesus Pereira, Andre Luiz
    Leite, Douglas Marcel Goncalves
    da Silva, Jose Humberto Dias
    da Silva Pelissari, Marcelo Rodrigues
    IONICS, 2021, 27 (04) : 1597 - 1609