Strained topological insulator spin field effect transistor

被引:5
作者
Bandyopadhyay, Supriyo [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
来源
MATERIALS FOR QUANTUM TECHNOLOGY | 2023年 / 3卷 / 01期
关键词
topological insulators; spin field effect transistors; spin interference; strain; ANALOG;
D O I
10.1088/2633-4356/acbd80
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The notion of a spin field effect transistor, where transistor action is realized by manipulating the spin degree of freedom of charge carriers instead of the charge degree of freedom, has captivated researchers for at least three decades. These transistors are typically implemented by modulating the spin orbit interaction in the transistor's channel with a gate voltage, which causes gate-controlled spin precession of the current carriers, and that modulates the channel current flowing between the ferromagnetic source and drain contacts to implement transistor action. Here, we introduce a new concept for a spin field effect transistor which does not exploit spin-orbit interaction. Its channel is made of the conducting surface of a strained three dimensional topological insulator (3D-TI) thin film and the transistor function is elicited by straining the channel region with a gate voltage (using a piezoelectric under-layer) to modify the energy dispersion relation, or the Dirac velocity, of the TI surface states. This rotates the spins of the carriers in the channel and that modulates the current flowing between the ferromagnetic source and drain contacts to realize transistor action. We call it a strained-topological-insulator-spin-field-effect-transistor, or STI-SPINFET. Its conductance on/off ratio is too poor to make it useful as a switch, but it may have other uses, such as an extremely energy-efficient stand-alone single-transistor frequency multiplier.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Quantitative Analysis of Weak Antilocalization Effect of Topological Surface States in Topological Insulator BiSbTeSe2 [J].
Li, Hui ;
Wang, Huan-Wen ;
Li, Yang ;
Zhang, Huachen ;
Zhang, Shuai ;
Pan, Xing-Chen ;
Jia, Bin ;
Song, Fengqi ;
Wang, Jiannong .
NANO LETTERS, 2019, 19 (04) :2450-2455
[42]   Stanene: A good platform for topological insulator and topological superconductor [J].
Zhao, Chen-Xiao ;
Jia, Jin-Feng .
FRONTIERS OF PHYSICS, 2020, 15 (05)
[43]   Spin filtering and spin separation in 2D materials by topological spin Hall effect [J].
Zadorozhnyi, Andrei ;
Dahnovsky, Yuri .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (40)
[44]   Manipulating Spin-Lattice Coupling in Layered Magnetic Topological Insulator Heterostructure via Interface Engineering [J].
Maity, Sujan ;
Dey, Dibyendu ;
Ghosh, Anudeepa ;
Masanta, Suvadip ;
De, Binoy Krishna ;
Kunwar, Hemant Singh ;
Das, Bikash ;
Kundu, Tanima ;
Palit, Mainak ;
Bera, Satyabrata ;
Dolui, Kapildeb ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Yu, Liping ;
Taraphder, A. ;
Datta, Subhadeep .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (38)
[45]   Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator [J].
Ivanov, Sergey K. ;
Zhuravitskii, Sergei A. ;
Skryabin, Nikolay N. ;
Dyakonov, Ivan V. ;
Kalinkin, Alexander A. ;
Kulik, Sergei P. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zadkov, Victor N. .
LASER & PHOTONICS REVIEWS, 2023, 17 (10)
[46]   Coexistence of Surface and Bulk Ferromagnetism Mimics Skyrmion Hall Effect in a Topological Insulator [J].
Fijalkowski, K. M. ;
Hartl, M. ;
Winnerlein, M. ;
Mandal, P. ;
Schreyeck, S. ;
Brunner, K. ;
Gould, C. ;
Molenkamp, L. W. .
PHYSICAL REVIEW X, 2020, 10 (01)
[47]   Strain induced photonic topological insulator [J].
Chen, Wenchao ;
Ren, Wenling ;
Cheng, Mingliang ;
Liu, Xianguo ;
Zhang, Xuefeng ;
Zhang, Mingji .
PHYSICS LETTERS A, 2022, 447
[48]   Piezotronic Transistor Based on Topological Insulators [J].
Hu, Gongwei ;
Zhang, Yan ;
Li, Lijie ;
Wang, Zhong Lin .
ACS NANO, 2018, 12 (01) :779-785
[49]   Magnetic Topological Insulator Heterostructures: A Review [J].
Liu, Jieyi ;
Hesjedal, Thorsten .
ADVANCED MATERIALS, 2023, 35 (27)
[50]   Exciton-polariton topological insulator [J].
S. Klembt ;
T. H. Harder ;
O. A. Egorov ;
K. Winkler ;
R. Ge ;
M. A. Bandres ;
M. Emmerling ;
L. Worschech ;
T. C. H. Liew ;
M. Segev ;
C. Schneider ;
S. Höfling .
Nature, 2018, 562 :552-556