UDA-FlyRecog: Unsupervised domain adaptation for drosophila cross-domain recognition model

被引:0
作者
Deng, Hong [1 ]
Cai, Xin [1 ]
Yin, ChengLe [2 ]
Gao, XueShun [1 ]
Hu, Chang [1 ]
He, WenJie [1 ]
Peng, YingQiong [1 ]
机构
[1] Jiangxi Agr Univ, Nanchang 330000, Jiangxi, Peoples R China
[2] Univ Debrecen, H-4032 Debrecen, Hungary
基金
中国国家自然科学基金;
关键词
Drosophila; Cross -domain recognition; Unsupervised domain adaptation; Feature alignment; Domain shift;
D O I
10.1016/j.jspr.2023.102192
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Drosophila is an important quarantine pest, and its identification plays a crucial role in agricultural development. To address the issue of significant style variations in Drosophila image samples collected from different environments, which results in poor performance when applying models trained on the source domain to the target domain, this paper proposes a domain-adaptive model for cross-domain Drosophila recognition (UDA-FlyRecog). This model combines global feature alignment and class-aware feature alignment methods, and adopts a cyclic iterative training approach to mitigate the effects of domain shift. Experimental results demonstrate that our method achieves the highest accuracy improvement of up to 16.7% compared to other methods on Drosophila datasets collected from both laboratory and natural environments, indicating promising practical applications.
引用
收藏
页数:8
相关论文
共 22 条
  • [1] Domain Adaptive Faster R-CNN for Object Detection in the Wild
    Chen, Yuhua
    Li, Wen
    Sakaridis, Christos
    Dai, Dengxin
    Van Gool, Luc
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3339 - 3348
  • [2] Ganin Y, 2015, Arxiv, DOI [arXiv:1409.7495, DOI 10.48550/ARXIV.1409.7495]
  • [3] Ganin Y, 2016, J MACH LEARN RES, V17
  • [4] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [5] Kang GL, 2019, Arxiv, DOI [arXiv:1901.00976, 10.48550/arXiv.1901.00976]
  • [6] Contrastive Adaptation Network for Unsupervised Domain Adaptation
    Kang, Guoliang
    Jiang, Lu
    Yang, Yi
    Hauptmann, Alexander G.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4888 - 4897
  • [7] Li X., 2022, arXiv, DOI 10.48550/arXiv.2212.02739
  • [8] Liu D., 2022, arXiv, DOI [10.48550/arXiv.2201.01929, DOI 10.48550/ARXIV.2201.01929]
  • [9] Liu H, 2019, 36 INT C MACHINE LEA, V97
  • [10] Long MS, 2017, PR MACH LEARN RES, V70