Existence and uniqueness of limits at infinity for homogeneous Sobolev functions

被引:1
作者
Koskela, Pekka [1 ]
Nguyen, Khanh [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
[2] Vietnam Natl Univ, VNU Univ Sci, Fac Math Mech & Informat, Hanoi, Vietnam
基金
芬兰科学院;
关键词
Limit at infinity; Sobolev function; Metric measure space; VOLUME GROWTH; SPACES;
D O I
10.1016/j.jfa.2023.110154
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence and uniqueness of limits at infinity along infinite curves outside a zero modulus family for functions in a homogeneous Sobolev space under the assumption that the underlying space is equipped with a doubling measure which supports a Poincare inequality. We also characterize the settings where this conclusion is nontrivial. Secondly, we introduce notions of weak polar coordinate systems and radial curves on metric measure spaces. Then sufficient and necessary conditions for existence of radial limits are given. As a consequence, we characterize the existence of radial limits in certain concrete settings.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 24 条
[1]   Polar coordinates in Carnot groups [J].
Balogh, ZM ;
Tyson, JT .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) :697-730
[2]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[3]   Locally p-admissible measures on R [J].
Bjorn, Anders ;
Bjorn, Jana ;
Shanmugalingam, Nageswari .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (04)
[4]   Geometric analysis on Cantor sets and trees [J].
Bjorn, Anders ;
Bjorn, Jana ;
Gill, James T. ;
Shanmugalingam, Nageswari .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 :63-114
[5]   Admissible measures in one dimension [J].
Björn, J ;
Buckley, S ;
Keith, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) :703-705
[6]   On limits at infinity of weighted Sobolev functions [J].
Eriksson-Bique, Sylvester ;
Koskela, Pekka ;
Nguyen, Khanh .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
[7]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[8]  
HAJLASZ P, 1995, CR ACAD SCI I-MATH, V320, P1211
[9]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[10]  
Hajlasz P., 2003, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math, Amer. Math. Soc. Providence, RI, V338, P173