Phase diagrams of semi-infinite systems by renormalization group theory and Monte Carlo simulation

被引:3
作者
Elgarraoui, O. [1 ]
Saadi, H. [1 ]
Monkade, M. [1 ]
Hachem, N. [1 ]
El Bouziani, M. [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab LPMC, Theoret Phys Team, El Jadida, Morocco
关键词
Semi-Infinite; Ising; Renormalization group; Monte Carlo; Phase diagram; ISING-MODEL; CRITICAL-BEHAVIOR; SURFACE; TRANSITIONS; SPIN-1/2; FIELD; SPINTRONICS;
D O I
10.1016/j.susc.2023.122369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we used the Migdal-Kadanoff renormalization group method to investigate two three-dimensional semi-infinite Ising systems. In the first one, the surface and bulk sites are occupied by spin-3/2 and spin-1/2 respectively, whereas those of the second one are occupied by spin-1/2 on the surface and spin-3/2 in the bulk. Based on the ratio of bulk and surface exchange interactions, we explored different topologies of phase diagrams showing various second order phase transitions, namely ordinary, extraordinary, surface and special transitions. We also found that both systems exhibited first order phase transitions, multicritical points and critical end-points. The existence of a first order phase transition at low temperatures was confirmed by plotting the derivative of the free energy. The Monte Carlo simulation was also used to verify and compare the results obtained by the renormalization group for the two semi-infinite systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SURFACE PHASE DIAGRAMS OF SEMI-INFINITE FERRIMAGNETIC SYSTEM
    Zouhair, Saida
    Monkade, Mohamed
    El Antari, Abdelmoumen
    El Bouziani, Mohammed
    Hachem, Nabil
    Madani, Mohamed
    SURFACE REVIEW AND LETTERS, 2021, 28 (05)
  • [2] Monte Carlo study of the magnetization distribution in semi-infinite systems upon phase transitions
    S. V. Belim
    T. A. Koval’
    The Physics of Metals and Metallography, 2014, 115 : 843 - 848
  • [3] Monte Carlo study of the magnetization distribution in semi-infinite systems upon phase transitions
    Belim, S. V.
    Koval', T. A.
    PHYSICS OF METALS AND METALLOGRAPHY, 2014, 115 (09) : 843 - 848
  • [4] Semi-infinite mixed spin-1/2 and spin-5/2 Blume-Capel model by renormalization group theory and Monte Carlo simulation
    El Antari, A.
    Hachem, N.
    Al-Rajhi, A.
    Madani, M.
    El Bouziani, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06)
  • [5] Position space renormalization group study of the spin-1 random semi-infinite Blume-Capel Model
    El Bouziani, Mohammed
    Gaye, Abou
    Jellal, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (04) : 689 - 701
  • [6] Phase diagrams for a semi-infinite nematic in contact with a micropatterned surface
    Atherton, T. J.
    LIQUID CRYSTALS, 2010, 37 (10) : 1225 - 1228
  • [7] Monte-Carlo simulation study of the diffusely reflected photons from a semi-infinite turbid media
    Vaseva, K
    Chaltakov, IV
    11TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2001, 4397 : 395 - 399
  • [8] Statistical resampling for accuracy estimate in Monte Carlo renormalization group
    Mattei, G
    Mignani, S
    Rosa, R
    PHYSICS LETTERS A, 1997, 237 (1-2) : 33 - 36
  • [9] Computer simulation of surface phase transitions in semi-infinite Ising magnets
    Belim S.V.
    Koval’ T.A.
    Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, 9 (6) : 1130 - 1136
  • [10] Computer Simulation of Critical Behavior of Semi-Infinite Antiferromagnetic Material
    Belim, S. V.
    Trushnikova, E. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2018, 119 (05) : 441 - 447