FGF21 promotes angiotensin II-induced abdominal aortic aneurysm via PI3K/AKT/mTOR pathway

被引:0
作者
Gu, Xuefeng [1 ]
Li, Qi [1 ]
Qian, Tianwei [1 ]
Hu, Qi [1 ]
Gu, Jianfeng [1 ]
Ding, Wei [1 ]
Li, Ming [1 ]
Wang, Ming [1 ]
Lu, Huan [1 ]
Tao, Ke [1 ,2 ]
机构
[1] Soochow Univ, Changshu Hosp, Dept Gen Surg, Changshu, Peoples R China
[2] Soochow Univ, Changshu Hosp, 1 Shuyuan Rsd, Yushan Dist 215500, Changshu, Peoples R China
关键词
abdominal aortic aneurysm; FGF21; autophagy; PI3K; AKT; mTOR pathway; AUTOPHAGY; CELL; APOPTOSIS; GROWTH;
D O I
10.1177/17085381231192688
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Background Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disorder with a high mortality rate. It was previously reported that fibroblast growth factor 21 (FGF21) was highly expressed in AAA patients. Nonetheless, its underlying mechanism in AAA progression is unclarified. Methods Angiotensin II (Ang-II) was used to induce AAA in human aortic vascular smooth muscle cells (HASMCs) and mouse models. Western blotting and RT-qPCR were utilized for measuring protein and RNA levels. Immunofluorescence staining was utilized for detecting LC3B expression in HASMCs. Elastica van Gieson staining was conducted for histological analysis of the abdominal aortas of mice. Results FGF21 displayed a high level in Ang-II-stimulated HASMCs and AAA mice. FGF21 depletion ameliorated abdominal aorta dilation and Ang-II-triggered pathological changes in mice. FGF21 silencing hindered autophagy and PI3K/AKT/mTOR pathway. Conclusions FGF21 contributes to AAA progression by enhancing autophagy and activating PI3K/AKT/mTOR pathway.
引用
收藏
页码:1369 / 1377
页数:9
相关论文
共 50 条
  • [41] The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis
    Tehranian, Cedric
    Fankhauser, Laura
    Harter, Patrick N.
    Ratcliffe, Colin D. H.
    Zeiner, Pia S.
    Messmer, Julia M.
    Hoffmann, Dirk C.
    Frey, Katharina
    Westphal, Dana
    Ronellenfitsch, Michael W.
    Sahai, Erik
    Wick, Wolfgang
    Karreman, Matthia A.
    Winkler, Frank
    NEURO-ONCOLOGY, 2022, 24 (02) : 213 - 225
  • [42] Sequential Dosing in Chemosensitization: Targeting the PI3K/Akt/mTOR Pathway in Neuroblastoma
    Westhoff, Mike-Andrew
    Faham, Najmeh
    Marx, Daniela
    Nonnenmacher, Lisa
    Jennewein, Claudia
    Enzenmueller, Stefanie
    Gonzalez, Patrick
    Fulda, Simone
    Debatin, Klaus-Michael
    PLOS ONE, 2013, 8 (12):
  • [43] NUCKS1 promotes the progression of colorectal cancer via activating PI3K/AKT/mTOR signaling pathway
    Zhu, Liao-Liao
    Shi, Jing-Jie
    Guo, Yong-Dong
    Yang, Cheng
    Wang, Rong-Lin
    Li, Shan-Shan
    Gan, Dong-Xue
    Ma, Pei-Xiang
    Li, Jun-Qiang
    Su, Hai-Chuan
    NEOPLASMA, 2023, 70 (02) : 272 - 286
  • [44] m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway
    Zhang, Han
    Zhang, Ping
    Long, Chongde
    Ma, Xinqi
    Huang, Hao
    Kuang, Xielan
    Du, Han
    Tang, Han
    Ling, Xiangtian
    Ning, Jie
    Liu, Huijun
    Deng, Xizhi
    Zou, Yuxiu
    Wang, Renchun
    Cheng, Hao
    Lin, Shuibin
    Zhang, Qingjiong
    Yan, Jianhua
    Shen, Huangxuan
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (21) : 12368 - 12378
  • [45] KIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer via PI3K/AKT/mTOR Signaling Pathway
    Liao, Huiling
    Zhang, Lan
    Lu, Shimin
    Li, Wei
    Dong, Weiguo
    FRONTIERS IN GENETICS, 2022, 13
  • [46] Leonurine inhibits breast cancer cell growth and angiogenesis via PI3K/AKT/mTOR pathway
    Tian, Junjun
    Peng, Lizhong
    Wang, Dongjie
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2023, 22 (03) : 509 - 515
  • [47] MUC3A promotes the progression of colorectal cancer through the PI3K/Akt/mTOR pathway
    Wei Su
    Baijie Feng
    Lina Hu
    Xianzhi Guo
    Minghua Yu
    BMC Cancer, 22
  • [48] Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway
    Cheng, Ying
    Shen, Aling
    Wu, Xiangyan
    Shen, Zhiqing
    Chen, Xiaoping
    Li, Jiapeng
    Liu, Liya
    Lin, Xiaoying
    Wu, Meizhu
    Chen, Youqin
    Chu, Jianfeng
    Peng, Jun
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 133
  • [49] Emodin-induced autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in human hepatocytes
    Zheng, Xiao-yuan
    Yang, Shi-ming
    Zhang, Rong
    Wang, Su-min
    Li, Guo-bing
    Zhou, Shi-wen
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2019, 13 : 3171 - 3179
  • [50] Putative functional variants of PI3K/AKT/mTOR pathway are associated with knee osteoarthritis susceptibility
    Wang, Kejie
    Chu, Minjie
    Wang, Feng
    Zhao, Yiwen
    Chen, Haifeng
    Dai, Xiaoyu
    JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2020, 34 (06)