FGF21 promotes angiotensin II-induced abdominal aortic aneurysm via PI3K/AKT/mTOR pathway

被引:0
|
作者
Gu, Xuefeng [1 ]
Li, Qi [1 ]
Qian, Tianwei [1 ]
Hu, Qi [1 ]
Gu, Jianfeng [1 ]
Ding, Wei [1 ]
Li, Ming [1 ]
Wang, Ming [1 ]
Lu, Huan [1 ]
Tao, Ke [1 ,2 ]
机构
[1] Soochow Univ, Changshu Hosp, Dept Gen Surg, Changshu, Peoples R China
[2] Soochow Univ, Changshu Hosp, 1 Shuyuan Rsd, Yushan Dist 215500, Changshu, Peoples R China
关键词
abdominal aortic aneurysm; FGF21; autophagy; PI3K; AKT; mTOR pathway; AUTOPHAGY; CELL; APOPTOSIS; GROWTH;
D O I
10.1177/17085381231192688
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Background Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disorder with a high mortality rate. It was previously reported that fibroblast growth factor 21 (FGF21) was highly expressed in AAA patients. Nonetheless, its underlying mechanism in AAA progression is unclarified. Methods Angiotensin II (Ang-II) was used to induce AAA in human aortic vascular smooth muscle cells (HASMCs) and mouse models. Western blotting and RT-qPCR were utilized for measuring protein and RNA levels. Immunofluorescence staining was utilized for detecting LC3B expression in HASMCs. Elastica van Gieson staining was conducted for histological analysis of the abdominal aortas of mice. Results FGF21 displayed a high level in Ang-II-stimulated HASMCs and AAA mice. FGF21 depletion ameliorated abdominal aorta dilation and Ang-II-triggered pathological changes in mice. FGF21 silencing hindered autophagy and PI3K/AKT/mTOR pathway. Conclusions FGF21 contributes to AAA progression by enhancing autophagy and activating PI3K/AKT/mTOR pathway.
引用
收藏
页码:1369 / 1377
页数:9
相关论文
共 50 条
  • [1] Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway
    Chen, Jun
    Liu, Fuqiang
    Wu, Jiao
    Yang, Yichun
    He, Jin
    Wu, Fan
    Yang, Kun
    Li, Junfeng
    Jiang, Zhongxiang
    Jiang, Zheng
    CELLULAR SIGNALLING, 2023, 106
  • [2] Leonurine Promotes the Osteoblast Differentiation of Rat BMSCs by Activation of Autophagy via the PI3K/Akt/mTOR Pathway
    Zhao, Bingkun
    Peng, Qian
    Poon, Enoch Hin Lok
    Chen, Fubo
    Zhou, Rong
    Shang, Guangwei
    Wang, Dan
    Xu, Yuanzhi
    Wang, Raorao
    Qi, Shengcai
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [3] Quercetin Promotes Abdominal Aortic Aneurysm Regression Through the RAGE/PI3K/AKT/mTOR Axis
    Yang, Xin
    Wang, Ying
    Xin, Guangyu
    Li, Jie
    Xu, Lei
    Zhang, Guohua
    Yang, Haotian
    NATURAL PRODUCT COMMUNICATIONS, 2024, 19 (09)
  • [4] Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE-/- mice
    Wang, Zhu
    Guo, Jingjing
    Han, Xinqiang
    Xue, Ming
    Wang, Wenming
    Mi, Lei
    Sheng, Yuguo
    Ma, Chao
    Wu, Jian
    Wu, Xuejun
    CELL AND BIOSCIENCE, 2019, 9 (01)
  • [5] Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats
    Liu, Kang
    Yang, Yingcong
    Zhou, Fang
    Xiao, Yeda
    Shi, Liwei
    NEUROREPORT, 2020, 31 (09) : 644 - 649
  • [6] Ginsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathway
    Mao, Nan
    Tan, Rui-Zhi
    Wang, Shao-Qing
    Wei, Cong
    Shi, Xin-Li
    Fan, Jun-Ming
    Wang, Li
    CELL BIOLOGY INTERNATIONAL, 2016, 40 (08) : 917 - 925
  • [7] The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review
    Sun, K.
    Luo, J.
    Guo, J.
    Yao, X.
    Jing, X.
    Guo, F.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) : 400 - 409
  • [8] Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway
    Lee, Ho Jeong
    Saralamma, Venu Venkatarame Gowda
    Kim, Seong Min
    Ha, Sang Eun
    Raha, Suchismita
    Lee, Won Sup
    Kim, Eun Hee
    Lee, Sang Joon
    Heo, Jeong Doo
    Kim, Gon Sup
    NUTRIENTS, 2018, 10 (08)
  • [9] EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells
    Du Bing-Xin
    Lin Pei
    Lin Jun
    CHINESE JOURNAL OF NATURAL MEDICINES, 2022, 20 (04) : 290 - 300
  • [10] Hydrogen sulphide promotes osteoclastogenesis by inhibiting autophagy through the PI3K/AKT/mTOR pathway
    Ma, Jun
    Du, Di
    Liu, Jia
    Guo, Lei
    Li, Yongchuan
    Chen, Aimin
    Ye, TianWen
    JOURNAL OF DRUG TARGETING, 2020, 28 (02) : 176 - 185