Mean-reverting schemes for solving the CIR model

被引:0
作者
Llamazares-Elias, S. [1 ]
Tocino, A. [1 ]
机构
[1] Univ Salamanca, Dept Math, Pl Merced 1, Salamanca 37008, Spain
关键词
Stochastic differential equations; CIR model; Mean-reverting; Stochastic numerical method; STRONG APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.cam.2023.115354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of methods for the numerical solution of the CIR model reproducing the mean -reversion property of the exact solution is presented. The convergence of the methods in the strong and weak senses is established. In addition, a method that captures exactly the first and second long term moments of the CIR process is found. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 20 条
  • [1] On the discretization schemes for the CIR (and Bessel squared) processes
    Alfonsi, Aurelien
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (04) : 355 - 384
  • [2] Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process
    Alfonsi, Aurelien
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 602 - 607
  • [3] Choudhry M., 2015, ADV FIXED INCOME ANA, Vsecond
  • [4] A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES
    COX, JC
    INGERSOLL, JE
    ROSS, SA
    [J]. ECONOMETRICA, 1985, 53 (02) : 385 - 407
  • [5] Deelstra G, 1998, APPL STOCH MODEL D A, V14, P77, DOI 10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO
  • [6] 2-2
  • [7] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115
  • [8] Glasserman P, 2004, MONTE CARLO METHODS
  • [9] Strong convergence rates for Cox-Ingersoll-Ross processes - Full parameter range
    Hefter, Mario
    Herzwurm, Andre
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1079 - 1101
  • [10] OPTIMAL STRONG APPROXIMATION OF THE ONE-DIMENSIONAL SQUARED BESSEL PROCESS
    Hefter, Mario
    Herzwurm, Andre
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (08) : 2121 - 2141