In order to enhance resource allocation in fog computing networks and establish an energy-aware service, this paper proposes a user satisfaction-based energy-saving computation offloading mechanism that jointly optimizes service decision, task offloading ratio, uplink bandwidth resource ratio, and computing resource ratio. Specifically, the proposed mechanism takes user satisfaction as a priority. It constructs a novel satisfaction function that considers the historical energy consumption distribution to capture the user's subjective perception of the service quality. Then, we develop a user satisfaction-based service decision (US-SD) algorithm to select unique service nodes for the users. Furthermore, to minimize the processing energy consumption, a subtask partition and resource allocation-based intelligent computation offloading (SPRA-ICO) algorithm is proposed. In such an algorithm, we design an innovative actor-critic network structure and add noise to the continuous output action to guarantee the randomness of deterministic policy exploration. Meanwhile, the experience replay buffer mechanism and parameter soft update operation are comprehensively employed to reduce the mutual guidance of training samples and improve the function convergence performance. Finally, the simulation results show that compared with other benchmark schemes, the proposed mechanism can realize good convergence speed and user retention rate while effectively mitigating the total energy consumption.