CCR-Net: Consistent contrastive representation network for multi-view clustering

被引:6
|
作者
Lin, Renjie [1 ,2 ]
Lin, Yongkun [3 ]
Lin, Zhenghong [1 ,2 ]
Du, Shide [1 ,2 ]
Wang, Shiping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou 350116, Peoples R China
[3] Fuzhou Univ, Maynooth Int Engn Coll, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Deep learning; Contrastive fusion learning; Consistent graph learning; Latent embedding learning; FUSION;
D O I
10.1016/j.ins.2023.118937
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, researchers have focused on utilizing given heterogeneous features to explore obvious discrimination information for clustering. Most of the current work exploits consistency using some fusion metrics, but the complementarity of multi-view features is not well leveraged. In this paper, we propose an efficient consistent contrastive representation network (CCR-Net) for multi-view clustering, which provides a generalized framework for multi-view learning tasks. First, the proposed model explores the complementarity by a designed contrastive fusion module to learn a shared fusion weight. Second, the proposed method utilizes a consistent representation module to ensure consistency and obtains a consistent graph. Furthermore, we also extend the proposed method to incomplete multi-view scenarios. The designed contrastive fusion module utilizes the complementarity of multiple views to fill in the missing view graphs. Moreover, the consistent feature representation module adds a maxpooling layer on CCR-Net to explore a shared local structure and extract a latent low-dimensional embedding. Finally, the proposed method presents end-to-end training and flexible task interfaces for multi-view learning. Comprehensive evaluations on challenging multi-view tasks demonstrate that the proposed method achieves outstanding performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-view clustering via robust consistent graph learning
    Wang, Changpeng
    Geng, Li
    Zhang, Jiangshe
    Wu, Tianjun
    DIGITAL SIGNAL PROCESSING, 2022, 128
  • [32] Consistent and diverse multi-View subspace clustering with structure constraint
    Si, Xiaomeng
    Yin, Qiyue
    Zhao, Xiaojie
    Yao, Li
    PATTERN RECOGNITION, 2022, 121
  • [33] Adaptively local consistent concept factorization for multi-view clustering
    Mei Lu
    Li Zhang
    Fanzhang Li
    Soft Computing, 2022, 26 : 1043 - 1055
  • [34] Contrastive learning-based multi-view clustering for incomplete multivariate time series
    Li, Yurui
    Du, Mingjing
    Jiang, Xiang
    Zhang, Nan
    INFORMATION FUSION, 2025, 117
  • [35] DR-Net: A Multi-View Face Synthesis Network Driven by Dual Representation
    Huang, Xianliang
    Lang, Yining
    Guo, Ying
    He, Yuan
    Xue, Hui
    Zhao, Li
    Zhou, Shuigeng
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1751 - 1756
  • [36] Self-Weighted Contrastive Fusion for Deep Multi-View Clustering
    Wu, Song
    Zheng, Yan
    Ren, Yazhou
    He, Jing
    Pu, Xiaorong
    Huang, Shudong
    Hao, Zhifeng
    He, Lifang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9150 - 9162
  • [37] Multi-view Self-Expressive Subspace Clustering Network
    Cui, Jinrong
    Li, Yuting
    Fu, Yulu
    Wen, Jie
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 417 - 425
  • [38] Consistent affinity representation learning with dual low-rank constraints for multi-view subspace clustering
    Fu, Lele
    Li, Jieling
    Chen, Chuan
    NEUROCOMPUTING, 2022, 514 : 113 - 126
  • [39] Transformer-Based Contrastive Multi-view Clustering via Ensembles
    Zhao, Mingyu
    Yang, Weidong
    Nie, Feiping
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 678 - 694
  • [40] Fine-grained multi-view clustering with robust multi-prototypes representation
    Yin, Hongwei
    Wang, Guixiang
    Hu, Wenjun
    Zhang, Zhao
    APPLIED INTELLIGENCE, 2023, 53 (07) : 8402 - 8420