CCR-Net: Consistent contrastive representation network for multi-view clustering

被引:6
|
作者
Lin, Renjie [1 ,2 ]
Lin, Yongkun [3 ]
Lin, Zhenghong [1 ,2 ]
Du, Shide [1 ,2 ]
Wang, Shiping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou 350116, Peoples R China
[3] Fuzhou Univ, Maynooth Int Engn Coll, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Deep learning; Contrastive fusion learning; Consistent graph learning; Latent embedding learning; FUSION;
D O I
10.1016/j.ins.2023.118937
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, researchers have focused on utilizing given heterogeneous features to explore obvious discrimination information for clustering. Most of the current work exploits consistency using some fusion metrics, but the complementarity of multi-view features is not well leveraged. In this paper, we propose an efficient consistent contrastive representation network (CCR-Net) for multi-view clustering, which provides a generalized framework for multi-view learning tasks. First, the proposed model explores the complementarity by a designed contrastive fusion module to learn a shared fusion weight. Second, the proposed method utilizes a consistent representation module to ensure consistency and obtains a consistent graph. Furthermore, we also extend the proposed method to incomplete multi-view scenarios. The designed contrastive fusion module utilizes the complementarity of multiple views to fill in the missing view graphs. Moreover, the consistent feature representation module adds a maxpooling layer on CCR-Net to explore a shared local structure and extract a latent low-dimensional embedding. Finally, the proposed method presents end-to-end training and flexible task interfaces for multi-view learning. Comprehensive evaluations on challenging multi-view tasks demonstrate that the proposed method achieves outstanding performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] IMPRL-Net: interpretable multi-view proximity representation learning network
    Lan S.
    Fang Z.
    Du S.
    Cai Z.
    Wang S.
    Neural Computing and Applications, 2024, 36 (24) : 15027 - 15044
  • [22] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344
  • [23] Dual Contrastive Prediction for Incomplete Multi-View Representation Learning
    Lin, Yijie
    Gou, Yuanbiao
    Liu, Xiaotian
    Bai, Jinfeng
    Lv, Jiancheng
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4447 - 4461
  • [24] Multi-view Contrastive Clustering with Clustering Guidance and Adaptive Auto-encoders
    Guo, Bingchen
    Kong, Bing
    Zhou, Lihua
    Chen, Hongmei
    Bao, Chongming
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 3 - 14
  • [25] Tensorized Scaled Simplex Representation for Multi-View Clustering
    Cai, Bing
    Lu, Gui-Fu
    Li, Hua
    Song, Weihong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6621 - 6631
  • [26] Multi-view Clustering using Barycentric Coordinate Representation
    Qian, Xiaotong
    Jin, Lili
    Cabanes, Guenael
    Rastin, Parisa
    Grozavu, Nistor
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [27] Representation Learning in Multi-view Clustering: A Literature Review
    Man-Sheng Chen
    Jia-Qi Lin
    Xiang-Long Li
    Bao-Yu Liu
    Chang-Dong Wang
    Dong Huang
    Jian-Huang Lai
    Data Science and Engineering, 2022, 7 : 225 - 241
  • [28] Multi-View Subspace Clustering With Block Diagonal Representation
    Guo, Jipeng
    Yin, Wenbin
    Sun, Yanfeng
    Hu, Yongli
    IEEE ACCESS, 2019, 7 : 84829 - 84838
  • [29] Adaptively local consistent concept factorization for multi-view clustering
    Lu, Mei
    Zhang, Li
    Li, Fanzhang
    SOFT COMPUTING, 2022, 26 (03) : 1043 - 1055
  • [30] Robust and Consistent Anchor Graph Learning for Multi-View Clustering
    Liu, Suyuan
    Liao, Qing
    Wang, Siwei
    Liu, Xinwang
    Zhu, En
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4207 - 4219