Universal sums of generalized heptagonal numbers

被引:0
|
作者
Kamaraj, Ramanujam [1 ]
Kane, Ben [1 ]
Oishi-Tomiyasu, Ryoko [2 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[2] Kyushu Univ, Inst Math Ind, Kyushu, Japan
关键词
Diophantine equations; Sums of polygonal numbers; Theta functions; Quadratic forms; QUADRATIC-FORMS;
D O I
10.1016/j.jnt.2023.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:500 / 536
页数:37
相关论文
共 50 条
  • [41] THE NUMBER OF REPRESENTATIONS OF AN INTEGER AS A SUM INVOLVING GENERALIZED PENTAGONAL NUMBERS
    Yao, Olivia X. M.
    Xia, Ernest X. W.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) : 1041 - 1056
  • [42] ON SOME DIOPHANTINE EQUATIONS INVOLVING GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Ait-Amrane, Lyes
    Behloul, Djilali
    COLLOQUIUM MATHEMATICUM, 2017, 150 (02) : 257 - 268
  • [43] On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2
    Mahadi Ddamulira
    Carlos A. Gómez
    Florian Luca
    Monatshefte für Mathematik, 2018, 187 : 635 - 664
  • [44] Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers
    Bitim, Bahar Demirturk
    Keskin, Refik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 451 - 459
  • [45] On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Gomez, Carlos A.
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 635 - 664
  • [46] Fermat's polygonal number theorem for repeated generalized polygonal numbers
    Banerjee, Soumyarup
    Batavia, Manav
    Kane, Ben
    Kyranbay, Muratzhan
    Park, Dayoon
    Saha, Sagnik
    So, Hiu Chun
    Varyani, Piyush
    JOURNAL OF NUMBER THEORY, 2021, 220 : 163 - 181
  • [47] Generalized Lucas numbers of the form 11x2 ∓ 1
    Keskin, Refik
    Ogut, Ummugulsum
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (04): : 1035 - 1045
  • [48] k-Generalized Lucas numbers, perfect powers and the problem of Pillai
    Faye, Bernadette
    Garcia, Jonathan
    Gomez, Carlos A.
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 839 - 885
  • [49] Generalized Fibonacci numbers of the form 2a+3b+5c
    Marques, Diego
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 543 - 557
  • [50] A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers
    Chaves, Ana Paula
    Marques, Diego
    JOURNAL OF NUMBER THEORY, 2015, 156 : 1 - 14