Universal sums of generalized heptagonal numbers

被引:0
|
作者
Kamaraj, Ramanujam [1 ]
Kane, Ben [1 ]
Oishi-Tomiyasu, Ryoko [2 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[2] Kyushu Univ, Inst Math Ind, Kyushu, Japan
关键词
Diophantine equations; Sums of polygonal numbers; Theta functions; Quadratic forms; QUADRATIC-FORMS;
D O I
10.1016/j.jnt.2023.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:500 / 536
页数:37
相关论文
共 50 条
  • [31] Curious properties of generalized Lucas numbers
    Hayder R. Hashim
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [32] BINARY QUADRATIC FORMS, AMBIGUOUS IDEALS, MARKOV NUMBERS, AND SUMS OF SQUARES
    Mollin, R. A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 129 - 155
  • [33] LAWS OF LARGE NUMBERS FOR QUADRATIC-FORMS, MAXIMA OF PRODUCTS AND TRUNCATED SUMS OF IID RANDOM-VARIABLES
    CUZICK, J
    GINE, E
    ZINN, J
    ANNALS OF PROBABILITY, 1995, 23 (01): : 292 - 333
  • [34] On the Mean Value of the Generalized Dedekind Sum and Certain Generalized Hardy Sums Weighted by the Kloosterman Sum
    Dagli, Muhammet Cihat
    Sever, Hamit
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (06) : 889 - 896
  • [35] Generalized Cullen numbers in linear recurrence sequences
    Bilu, Yuri
    Marques, Diego
    Togbe, Alain
    JOURNAL OF NUMBER THEORY, 2019, 202 : 412 - 425
  • [36] Pythagorean triples containing generalized Lucas numbers
    Siar, Zafer
    Keskin, Refik
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (04) : 1904 - 1912
  • [37] SOLUTIONS OF A GENERALIZED MARKOFF EQUATION IN FIBONACCI NUMBERS
    Hashim, Hayder Raheem
    Tengely, Szabolcs
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1069 - 1078
  • [38] Even perfect numbers among generalized Fibonacci sequences
    Facó V.
    Marques D.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (3): : 363 - 370
  • [39] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [40] REPRESENTATION NUMBERS BY SUMS OF QUADRATIC FORMS X12 + x1x2 + x22 IN SIXTEEN VARIABLES
    Kokluce, Bulent
    Gurel, Muberra
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 277 - 283