Constructive Electroactive 2D/2D MoS2-N-rGO and 1D/2D Bi2S3-N-rGO Heterostructure for Excellent Mo-Bi Supercapattery Applications

被引:5
作者
Elkatlawy, Saeid M. [1 ,4 ]
Sakr, Abdelhamid A. [1 ,4 ]
Wang, John [2 ]
Elshahawy, Abdelnaby M. [3 ,4 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Phys, Damanhour 22111, Egypt
[2] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[3] Assiut Univ, Fac Sci, Phys Dept, Assiut 71516, Egypt
[4] Acad Sci Res & Technol ASRT, Cairo, Egypt
关键词
Supercapattery; MoS2; Bi2S3; Reduced graphene oxide; Heterostructures; GRAPHENE OXIDE COMPOSITES; NANOSHEET ARRAYS; SUPERCAPACITOR ELECTRODES; BI2S3; NANOFLOWERS; NI FOAM; PERFORMANCE; STORAGE; CARBON; NANOPARTICLES; HYBRIDS;
D O I
10.1007/s10904-023-02607-x
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Metal sulfides including MoS2 and Bi2S3 materials, have been considered as a strong candidate for supercapacitor applications. However, the short-term stability and low surface area have limited the establishment of such eco-friendly materials in energy storage. In this work, an effective strategy is designed to in-situ combine transition metal sulfides with nitrogen doped reduced graphene oxide hydrogels and improve the overall supercapattery properties. Precisely, MoS2-N-rGO and Bi2S3-N-rGO hydrogels have been developed via hydrothermal route. The morphological analysis manifests two-dimensional 2D/2D heterostructure for the MoS2-N-rGO and 1D/2D heterostructure for the Bi2S3-N-rGO. The cyclic voltammetry studies showed a battery-like electrochemical behavior for the synthesized hydrogels. The calculated capacitance for MoS2-N-rGO and Bi2S3-N-rGO are about 438 F/g and 342 F/g @ 1 A/g with 50% and 41% of their capacitance initial values @ 20 A/g, respectively. The cycling performance showed that MoS2-N-rGO and Bi2S3-N-rGO can maintain 90% and 98% of their original specific capacitance after 1000 cycles life. Furthermore, the supercapattery device was fabricated using MoS2-N-rGO as cathode and Bi2S3-N-rGO as anode. The hybrid device is capable of offering 33.4 Wh/kg energy density, at 0.85 kW/kg power density, with 44.7% retention at 20 A/g. Notably, the overall electrochemical behavior of Mo-Bi supercapattery device is remarkable among the pointed behaviors for other hybrid devices.
引用
收藏
页码:1741 / 1754
页数:14
相关论文
共 71 条
  • [1] Recent advances and challenges of current collectors for supercapacitors
    Abdisattar, Alisher
    Yeleuov, Mukhtar
    Daulbayev, Chingis
    Askaruly, Kydyr
    Tolynbekov, Aidos
    Taurbekov, Azamat
    Prikhodko, Nikolay
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2022, 142
  • [2] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [3] Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries
    Balasubramaniam, Saravanakumar
    Mohanty, Ankita
    Balasingam, Suresh Kannan
    Kim, Sang Jae
    Ramadoss, Ananthakumar
    [J]. NANO-MICRO LETTERS, 2020, 12 (01)
  • [4] Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
  • [5] In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries
    Chang, Kun
    Chen, Weixiang
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (14) : 4252 - 4254
  • [6] Supercapacitor and supercapattery as emerging electrochemical energy stores
    Chen, George Z.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2017, 62 (04) : 173 - 202
  • [7] Hierarchical NiCo2S4 Nanotube@NiCo2S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors
    Chen, Haichao
    Chen, Si
    Shao, Hongyan
    Li, Chao
    Fan, Meiqiang
    Chen, Da
    Tian, Guanglei
    Shu, Kangying
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (02) : 248 - 255
  • [8] One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors
    Chen, Wei
    Xia, Chuan
    Alshareef, Husam N.
    [J]. ACS NANO, 2014, 8 (09) : 9531 - 9541
  • [9] Synthesis and characterization of MoS2 nanosheets
    Deokar, G.
    Vignaud, D.
    Arenal, R.
    Louette, P.
    Colomer, J-F
    [J]. NANOTECHNOLOGY, 2016, 27 (07)
  • [10] Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment
    Diez, Noel
    Sliwak, Agata
    Gryglewicz, Stanislaw
    Grzyb, Bartosz
    Gryglewicz, Grazyna
    [J]. RSC ADVANCES, 2015, 5 (100) : 81831 - 81837