Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions

被引:55
|
作者
Li, Qi [1 ,2 ]
Chen, Liang [1 ]
Kong, Lin [3 ]
Wang, Dong [4 ,5 ]
Xia, Min [6 ]
Shen, Changqing [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215131, Peoples R China
[2] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[3] Chang Guang Satellite Technol CO LTD, Changchun 130000, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Ind Engn & Management, State Key Lab Mech Syst & Vibrat, Shanghai 200000, Peoples R China
[5] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200000, Peoples R China
[6] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, Lancashire, England
基金
中国国家自然科学基金;
关键词
Domain augmentation; Fault diagnosis; Unseen working condition; Rotating machinery; Domain generalization;
D O I
10.1016/j.ress.2023.109171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intelligent fault diagnosis based on domain adaptation has recently been extensively researched to promote reliability of safety-critical assets under different working conditions. However, target data may be inaccessible in the model training phase, resulting in the degradation or failure of the diagnosis model. Therefore, this paper introduces a new idea called cross-domain augmentation (CDA) to achieve diagnosis under unseen working conditions, which are frequently occurred in industrial scenarios. To realize this idea, an adversarial domain -augmented generalization (ADAG) method is proposed with domain augmentation via convex combination of data and feature-label pairs. Through adversarial training on multi-source domains and the augmented domain, ADAG enables learning generalized and augmented features, which are proximal representation in the unseen domain, facilitating the generalization ability of the model. Moreover, feature extractor and domain classifier are optimized as adversaries in model training to obtain domain-invariant features, while the fault classifier is trained to identify the features. Extensive experiment studies indicate that ADAG can successfully solve the cross -domain diagnosis problem under unseen working conditions. For SDUST case study, ADAG promotes the model accuracy by 1.44%; while for a more challenging Ottawa case study, it promotes the model accuracy by 5.34%. Moreover, the domain discrepancy is reduced by 4.6%.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
    Zhao, Chao
    Zio, Enrico
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 245
  • [32] A new multichannel deep adaptive adversarial network for cross-domain fault diagnosis
    Han, Baokun
    Xing, Shuo
    Wang, Jinrui
    Zhang, Zongzhen
    Bao, Huaiqian
    Zhang, Xiao
    Jiang, Xingwang
    Liu, Zongling
    Yang, Zujie
    Ma, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [33] A Novel Joint Adversarial Domain Adaptation Method for Rotary Machine Fault Diagnosis under Different Working Conditions
    Zhao, Xiaoping
    Shao, Fan
    Zhang, Yonghong
    SENSORS, 2022, 22 (22)
  • [34] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [35] A Hybrid Adversarial Domain Adaptation Network for Bearing Fault Diagnosis Under Varying Working Conditions
    Zhang, Ziyun
    Peng, Lei
    Dai, Guangming
    Wang, Maocai
    Bai, Junfei
    Zhang, Lei
    Li, Jian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Domain-augmented meta ensemble learning for mechanical fault diagnosis from heterogeneous source domains to unseen target domains
    Xiao, Yiming
    Shao, Haidong
    Wang, Jie
    Cai, Baoping
    Liu, Bin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [37] Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings
    Wang, Yuanfei
    Li, Shihao
    Jia, Feng
    Shen, Jianjun
    MACHINES, 2022, 10 (05)
  • [38] Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions
    Ding, Yifei
    Jia, Minping
    Cao, Yudong
    Ding, Peng
    Zhao, Xiaoli
    Lee, Chi-Guhn
    KNOWLEDGE-BASED SYSTEMS, 2023, 261
  • [39] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhongwei Zhang
    Mingyu Shao
    Chicheng Ma
    Zhe Lv
    Jilei Zhou
    Nonlinear Dynamics, 2022, 108 : 2385 - 2404
  • [40] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhang, Zhongwei
    Shao, Mingyu
    Ma, Chicheng
    Lv, Zhe
    Zhou, Jilei
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2385 - 2404