A linearized integral equation reconstruction method of admittivity distributions using Electrical Impedance Tomography

被引:1
作者
Sebu, Cristiana [1 ]
Amaira, Andrei [1 ]
Curmi, Jeremy [2 ]
机构
[1] Univ Malta, Dept Math, MSD-2080 Msida, Malta
[2] Fast Track Solut Ltd, 120A Tower Rd, Sliema 1605, SLM, Malta
关键词
Electrical impedance tomography; Complex admittivity; Integral equation methods; Inverse problems; SPATIAL PRIOR; EIT; BREAST; DIFFERENCE; SPECTROSCOPY; CLASSIFICATION; VALIDATION; ALGORITHM; TISSUES; DOMAIN;
D O I
10.1016/j.enganabound.2023.01.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, a novel reconstruction algorithm that approximates smooth complex admittivity distributions for Electrical Impedance Tomography is presented. This non-iterative algorithm is based on a linearized integral equation approach which has been extended to simultaneously reconstruct the conductivity and permittivity distributions of two-dimensional domains from boundary measurements of high-frequency alternating input currents and induced potentials. Reconstructions from noisy simulated data are obtained from single-time, time-difference and multiple-times data.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [31] Image reconstruction method for electrical impedance tomography using U2-Net
    Ye M.
    Li X.
    Liu K.
    Han W.
    Yao J.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (02): : 235 - 243
  • [32] A Bilateral Constrained Image Reconstruction Method Using Electrical Impedance Tomography and Ultrasonic Measurement
    Liu, Hao
    Zhao, Shu
    Tan, Chao
    Dong, Feng
    IEEE SENSORS JOURNAL, 2019, 19 (21) : 9883 - 9895
  • [33] Admittivity imaging from multi-frequency micro-electrical impedance tomography
    Ammari, Habib
    Giovangigli, Laure
    Nguyen, Loc Hoang
    Seo, Jin-Keun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1601 - 1618
  • [34] A Parametric Level Set Method for Electrical Impedance Tomography
    Liu, Dong
    Khambampati, Anil Kumar
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 451 - 460
  • [35] Sparsity reconstruction in electrical impedance tomography: An experimental evaluation
    Gehre, Matthias
    Kluth, Tobias
    Lipponen, Antti
    Jin, Bangti
    Seppanen, Aku
    Kaipio, Jari P.
    Maass, Peter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2126 - 2136
  • [36] Multifrequency Electrical Impedance Tomography Using Spectral Constraints
    Malone, Emma
    dos Santos, Gustavo Sato
    Holder, David
    Arridge, Simon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) : 340 - 350
  • [37] B-Spline-Based Sharp Feature Preserving Shape Reconstruction Approach for Electrical Impedance Tomography
    Liu, Dong
    Gu, Danping
    Smyl, Danny
    Deng, Jiansong
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) : 2533 - 2544
  • [38] An Image Reconstruction Algorithm for Electrical Impedance Tomography Using Measurement Estimation of Virtual Electrodes
    Yang, Lu
    Wu, Hongtao
    Liu, Kai
    Chen, Bai
    Yang, Yunjie
    Zhu, Chengjun
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13012 - 13022
  • [39] Electrical Impedance Tomography Image Reconstruction using Convolutional Neural Network with Periodic Padding
    Duran, Guilherme C.
    Sato, Andre K.
    Ueda, Edson K.
    Takimoto, Rogerio Y.
    Martins, Thiago C.
    Tsuzuki, Marcos S. G.
    IFAC PAPERSONLINE, 2021, 54 (15): : 418 - 423
  • [40] MONOTONICITY-BASED SHAPE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Harrach, Bastian
    Ullrich, Marcel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3382 - 3403