A linearized integral equation reconstruction method of admittivity distributions using Electrical Impedance Tomography

被引:1
|
作者
Sebu, Cristiana [1 ]
Amaira, Andrei [1 ]
Curmi, Jeremy [2 ]
机构
[1] Univ Malta, Dept Math, MSD-2080 Msida, Malta
[2] Fast Track Solut Ltd, 120A Tower Rd, Sliema 1605, SLM, Malta
关键词
Electrical impedance tomography; Complex admittivity; Integral equation methods; Inverse problems; SPATIAL PRIOR; EIT; BREAST; DIFFERENCE; SPECTROSCOPY; CLASSIFICATION; VALIDATION; ALGORITHM; TISSUES; DOMAIN;
D O I
10.1016/j.enganabound.2023.01.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, a novel reconstruction algorithm that approximates smooth complex admittivity distributions for Electrical Impedance Tomography is presented. This non-iterative algorithm is based on a linearized integral equation approach which has been extended to simultaneously reconstruct the conductivity and permittivity distributions of two-dimensional domains from boundary measurements of high-frequency alternating input currents and induced potentials. Reconstructions from noisy simulated data are obtained from single-time, time-difference and multiple-times data.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [1] Electrical Impedance Tomography-Based Spatial Reconstruction of Admittivity in a Cylindrical Object
    Dusek, Jan
    Mikulka, Jan
    PROCEEDINGS OF THE 2020 19TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA (ME), 2020, : 114 - 119
  • [2] Reconstruction of admittivity distribution without phase measurements in multi-frequency electrical impedance tomography (MFEIT)
    Kuusela, P.
    Pourghaz, M.
    Seppanen, A.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [3] Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography
    Darde, J.
    Hyvonen, N.
    Seppanen, A.
    Staboulis, S.
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 176 - 198
  • [4] A Reconstruction-Classification Method for Multifrequency Electrical Impedance Tomography
    Malone, Emma
    dos Santos, Gustavo Sato
    Holder, David
    Arridge, Simon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1486 - 1497
  • [5] A direct reconstruction method for anisotropic electrical impedance tomography
    Hamilton, S. J.
    Lassas, M.
    Siltanen, S.
    INVERSE PROBLEMS, 2014, 30 (07)
  • [6] The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography
    Alberti, Giovanni S.
    Ammari, Habib
    Jin, Bangti
    Seo, Jin-Keun
    Zhang, Wenlong
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1525 - 1551
  • [7] Multimodal Image Reconstruction of Electrical Impedance Tomography Using Kernel Method
    Liu, Zhe
    Yang, Yunjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] Free-surface and admittivity estimation in electrical impedance tomography
    Tossavainen, O. -P.
    Kolehmainen, V.
    Vauhkonen, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (13) : 1991 - 2013
  • [9] B-Spline Level Set Method for Shape Reconstruction in Electrical Impedance Tomography
    Liu, Dong
    Gu, Danping
    Smyl, Danny
    Deng, Jiansong
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 1917 - 1929
  • [10] Image reconstruction using simulated annealing in electrical impedance tomography: a new approach
    Martins, J. S.
    Moura, C. S.
    Vargas, R. M. F.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (06) : 834 - 854