Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review

被引:12
作者
Koch, Anna H. [1 ,2 ]
Jeelof, Lara S. [1 ,2 ]
Muntinga, Caroline L. P. [1 ,2 ]
Gootzen, T. A. [1 ,2 ]
van de Kruis, Nienke M. A. [1 ,2 ]
Nederend, Joost [3 ]
Boers, Tim [4 ]
van der Sommen, Fons [4 ]
Piek, Jurgen M. J. [1 ,2 ]
机构
[1] Catharina Hosp, Dept Gynaecol & Obstet, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[2] Catharina Hosp, Catharina Canc Inst, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[3] Catharina Hosp, Dept Radiol, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[4] Univ Technol Eindhoven, Dept Elect Engn, VCA Grp, NL-5600 MB Eindhoven, Noord Brabant, Netherlands
关键词
Diagnosis; Computer-assisted; Machine learning; Ovarian neoplasms; ULTRASOUND IMAGES; AUTOMATED CHARACTERIZATION; TUMOR CHARACTERIZATION; MALIGNANCY INDEX; ROC CURVE; RISK; CLASSIFICATION; PREDICTION; BENIGN; BIAS;
D O I
10.1186/s13244-022-01345-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesDifferent noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors.MethodsWe searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards.ResultsIn thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6-100% and 66.7-100% and specificities ranged from 76.3-100%; 69-100% and 77.8-100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set.ConclusionBased on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.
引用
收藏
页数:22
相关论文
共 69 条
[1]   Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification [J].
Acharya, U. R. ;
Mookiah, M. R. K. ;
Sree, S. Vinitha ;
Yanti, R. ;
Martis, R. J. ;
Saba, L. ;
Molinari, F. ;
Guerriero, S. ;
Suri, J. S. .
ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03) :237-245
[2]   Use of Nonlinear Features for Automated Characterization of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest Framework [J].
Acharya, U. Rajendra ;
Akter, Ayesha ;
Chowriappa, Pradeep ;
Dua, Sumeet ;
Raghavendra, U. ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Leong, Sook Sam ;
Vijayananthan, Anushya ;
Hagiwara, Yuki ;
Ramli, Marlina Tanty ;
Ng, Kwan Hoong .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (04) :1385-1402
[3]   GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Kulshreshtha, Sanjeev ;
Molinari, Filippo ;
Koh, Joel En Wei ;
Saba, Luca ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2014, 13 (06) :529-539
[4]   Ovarian Tumor Characterization and Classification Using Ultrasound-A New Online Paradigm [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Saba, Luca ;
Molinari, Filippo ;
Guerriero, Stefano ;
Suri, Jasjit S. .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) :544-553
[5]   Ovarian Tumor Characterization using 3D Ultrasound [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Saba, Luca ;
Molinari, Filippo ;
Guerriero, Stefano ;
Sun, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (06) :543-552
[6]   ULTRASOUND IMAGE DISCRIMINATION BETWEEN BENIGN AND MALIGNANT ADNEXAL MASSES BASED ON A NEURAL NETWORK APPROACH [J].
Aramendia-Vidaurreta, Veronica ;
Cabeza, Rafael ;
Villanueva, Arantxa ;
Navallas, Javier ;
Luis Alcazary, Juan .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (03) :742-752
[7]   Comparison of O-RADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses [J].
Basha, Mohammad Abd Alkhalik ;
Metwally, Maha Ibrahime ;
Gamil, Shrif A. ;
Khater, Hamada M. ;
Aly, Sameh Abdelaziz ;
El Sammak, Ahmed A. ;
Zaitoun, Mohamed M. A. ;
Khattab, Enass M. ;
Azmy, Taghreed M. ;
Alayouty, Nader Ali ;
Mohey, Nesreen ;
Almassry, Hosam Nabil ;
Yousef, Hala Y. ;
Ibrahim, Safaa A. ;
Mohamed, Ekramy A. ;
Mohamed, Abd El Motaleb ;
Afifi, Amira Hamed Mohamed ;
Harb, Ola A. ;
Algazzar, Hesham Youssef .
EUROPEAN RADIOLOGY, 2021, 31 (02) :674-684
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   Predicting ovarian malignancy: Application of artificial neural networks to transvaginal and color Doppler flow US [J].
Biagiotti, R ;
Desii, C ;
Vanzi, E ;
Gacci, G .
RADIOLOGY, 1999, 210 (02) :399-403
[10]   Risk of Ovarian Malignancy Algorithm versus Risk Malignancy Index-I for Preoperative Assessment of Adnexal Masses: A Systematic Review and Meta-Analysis [J].
Chacon, Enrique ;
Dasi, Joana ;
Caballero, Carolina ;
Alcazar, Juan Luis .
GYNECOLOGIC AND OBSTETRIC INVESTIGATION, 2019, 84 (06) :591-598