Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems

被引:14
作者
Rabiei, Kobra [1 ]
Razzaghi, Mohsen [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
Delay fractional optimal control problem; Beta function; Generalized Mott polynomials; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; SYSTEMS; CALCULUS; MODEL;
D O I
10.1007/s11071-022-08177-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann-Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method.
引用
收藏
页码:6469 / 6486
页数:18
相关论文
共 58 条
[1]  
Abramowitz M., 1973, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V9th
[2]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[3]   HEREDITARY CONTROL PROBLEMS - NUMERICAL-METHODS BASED ON AVERAGING APPROXIMATIONS [J].
BANKS, HT ;
BURNS, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :169-208
[4]  
BASS R., 2013, Real Analysis for Graduate Students
[5]   Fractional calculus in hydrologic modeling: A numerical perspective [J].
Benson, David A. ;
Meerschaert, Mark M. ;
Revielle, Jordan .
ADVANCES IN WATER RESOURCES, 2013, 51 :479-497
[6]   A new Legendre operational technique for delay fractional optimal control problems [J].
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
CALCOLO, 2016, 53 (04) :521-543
[7]   Analog fractional order controller in temperature and motor control applications [J].
Bohannan, Gary W. .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1487-1498
[8]  
Bryson A.E., 1975, Applied Optimal Control: Optimization, Estimation, and Control
[9]  
Canuto C., 2006, SCIENTIF COMPUT
[10]   Optimal control of time delay systems via hybrid of block-pulse functions and orthonormal Taylor series [J].
Dadkhah M. ;
Farahi M.H. .
International Journal of Applied and Computational Mathematics, 2016, 2 (1) :137-152