New bounds on the dimension of the Schur multiplier of n-Lie algebras

被引:0
作者
Gholami, Nahid [1 ]
Saeedi, Farshid [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad 9187147578, Razavi Khorasan, Iran
关键词
Nilpotent n-Lie algebra; Schur multiplier; Capable n-Lie algebra; maximal class;
D O I
10.1080/00927872.2022.2086987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a bound on the dimension of the Schur multiplier of a finite-dimensional nilpotent n-Lie algebra, which sharpens the earlier bounds on the dimension of Schur multiplier of such n-Lie algebras. Then we give the structure of all nilpotent n-Lie algebras that attain this bound. Also, we obtain a new bound on the dimension of the Schur multiplier of a d-dimensional c-step nilpotent n-Lie algebra with the derived subalgebra of dimension d - n, which sharpens the earlier known bounds.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 13 条
  • [1] On the Dimension of Non-Abelian Tensor Squares of n-Lie Algebras
    Akbarossadat, Nafiseh
    Saeedi, Farshid
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (03): : 363 - 381
  • [2] Akbarossadat SN, 2020, J LIE THEORY, V30, P259
  • [3] On the dimension of the Schur multiplier of n-Lie algebras
    Akbarossadat, Seyedeh Nafiseh
    Saeedi, Farshid
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07) : 1465 - 1499
  • [4] A characterization of finite dimensional nilpotent Filippov algebras
    Darabi, H.
    Saeedi, F.
    Eshrati, M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 101 : 100 - 107
  • [5] Darabi H, 2017, J LIE THEORY, V27, P271
  • [6] On the multiplier of nilpotent n-Lie algebras
    Eshrati, M.
    Saeedi, F.
    Darabi, H.
    [J]. JOURNAL OF ALGEBRA, 2016, 450 : 162 - 172
  • [7] FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879
  • [8] The schur multiplier of a nilpotent Lie algebra with derived subalgebra of maximum dimension
    Johari, Farangis
    Niroomand, Peyman
    Shamsaki, Afsaneh
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (06) : 849 - 856
  • [9] Nilpotent lie algebras having the Schur multiplier of maximum dimension
    Niroomand, Peyman
    Shamsaki, Afsaneh
    [J]. QUAESTIONES MATHEMATICAE, 2020, 43 (09) : 1239 - 1246
  • [10] Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field
    Niroomand, Peyman
    Johari, Farangis
    Parvizi, Mohsen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) : 542 - 554