共 23 条
Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst
被引:8
作者:
Faizan, Muhammad
[1
,2
]
Zhang, Ruirui
[1
]
Liu, Ruixia
[1
,2
,3
]
机构:
[1] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn,State Key Lab Multi, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhengzhou Inst Emerging Ind Technol, Zhengzhou 450000, Peoples R China
关键词:
Cupper based ionic liquid;
Vanadium phosphorus oxide;
N-butane selective oxidation;
Structure directing agent;
Electronic promoter;
Carbon neutrality;
CLIMATE-CHANGE;
VPO;
PHOSPHATE;
SOLVENTS;
PYROPHOSPHATE;
PERFORMANCE;
ACTIVATION;
D O I:
10.1007/s10562-022-03962-z
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Recently, global warming is proving to be an increasing challenge for the sustainable human survival on planet earth. Worldwide, researchers are putting their efforts into controlling carbon emissions and have set the aim to achieve levels of overall carbon neutrality. Different industrial processes, especially oil refinery processes, release large amounts of low-carbon alkanes as gaseous byproducts directly into the air and pollute clean environments, which is one of the major reasons for sudden climate changes, ocean acidification, loss of biodiversity, and rising sea levels. The conversion of lighter alkanes, especially n-butane, into value-added chemicals can be beneficial for green economies and green environments. Presently, heterogeneous vanadium phosphorus oxide catalysts (VPOs) are considered potential candidates for n-butane selective oxidation toward maleic anhydride (MA). In this research, we developed a VPO catalyst with the assistance of copper-based ionic liquids (Cu-ILs), including [Bmim] [OAc[-[Cu(OAc)(2)], [B-mim] [Cl]-[CuCl] and [B-mim] [Cl]-[CuCl2]. We observed significant improvement in the MA selectivity; meanwhile, the COx (CO and CO2) selectivity was decreased. Compared to the unpromoted catalyst (Blank-VPO), the Cu-IL-promoted catalyst, i.e., [Bmim] [Cl]-[CuCl2]-VPO remarkably increased the MA selectivity (11%) and n-butane conversion (9.2%) and minimized the COx selectivity (11%). In addition to this the ratio of CO/CO2 has been reduced from 2.01 to 1.32. Therefore, this can be a helpful process for achieving carbon neutrality goals. [GRAPHICS] .
引用
收藏
页码:271 / 284
页数:14
相关论文