Kirchhoff type problem;
exponential nonlinearity;
variational methods;
critical growth;
LINEAR ELLIPTIC EQUATION;
MOSER TYPE INEQUALITY;
POSITIVE SOLUTIONS;
NONTRIVIAL SOLUTION;
UNBOUNDED-DOMAINS;
D O I:
10.1080/17476933.2022.2048297
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The aim of this article is twofold: firstly, we deal with the existence and multiplicity of weak solutions to the Kirchhoff problem: {-a(integral(Omega) vertical bar del u vertical bar(N) dx) Delta U-N = f(X, u)/vertical bar X vertical bar(b) + lambda h(x) in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N(N >= 2) and 0 <= b < N. Secondly, we deal with the existence and multiplicity of weak solutions to the Kirchhoff problem: -a(integral(RN) vertical bar del u vertical bar(N) + V(x)vertical bar u vertical bar(N) dx) (Delta(N)u + V(x)vertical bar u vertical bar(N-2) u) =g(x, u)/vertical bar x vertical bar(b) + lambda h(x) in R-N, where N >= 2 and 0 <= b < N. We assume that f and g have critical exponential growth at infinity. To establish our existence results, we use the mountain pass theorem, Ekeland variational principle and Moser-Trudinger inequality.
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Li, Qin
Yang, Zuodong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Sch Teacher Educ, Nanjing 210097, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
机构:
Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
Che, Guofeng
Chen, Haibo
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaGuangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China