Gradient higher integrability for singular parabolic double-phase systems

被引:3
|
作者
Kim, Wontae [1 ]
Sarkio, Lauri [1 ]
机构
[1] Aalto Univ, Dept Math, POB 11100, Aalto 00076, Finland
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 03期
关键词
Parabolic double-phase systems; Parabolic p-Laplace systems; Gradient estimates; REGULARITY;
D O I
10.1007/s00030-024-00928-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{2n}{n+2}< p\le 2$$\end{document}. The result is based on a reverse Holder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Normalized solutions for the double-phase problem with nonlocal reaction
    Cai, Li
    Zhang, Fubao
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [42] Existence of solutions for double-phase problems by topological degree
    Wang, Bin-Sheng
    Hou, Gang-Ling
    Ge, Bin
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (01)
  • [43] Gradient estimates for parabolic systems from composite material
    Li, HaiGang
    Li, YanYan
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2011 - 2052
  • [44] Concentration of solutions for double-phase problems with a general nonlinearity
    Wang, Li
    Wang, Jun
    Zhou, Daoguo
    AIMS MATHEMATICS, 2023, 8 (06): : 13593 - 13622
  • [45] Existence and multiplicity of solutions for double-phase Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) : 546 - 560
  • [46] On the uniqueness for weak solutions of steady double-phase fluids
    Abdelwahed, Mohamed
    Berselli, Luigi C.
    Chorfi, Nejmeddine
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 454 - 468
  • [47] Holder gradient estimates for a class of singular or degenerate parabolic equations
    Imbert, Cyril
    Jin, Tianling
    Silvestre, Luis
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 845 - 867
  • [48] Nonautonomous double-phase equations with strong singularity and concave perturbation
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Yuan, Shuai
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) : 1245 - 1262
  • [49] On a class of quasilinear problems with double-phase reaction and indefinite weight
    Onete, Florin-Iulian
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2019, 46 (01): : 218 - 222
  • [50] Higher integrability for the gradient of Mumford-Shah almost-minimizers
    Piontek, Sebastian
    Schmidt, Thomas
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26