Gradient higher integrability for singular parabolic double-phase systems

被引:3
|
作者
Kim, Wontae [1 ]
Sarkio, Lauri [1 ]
机构
[1] Aalto Univ, Dept Math, POB 11100, Aalto 00076, Finland
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 03期
关键词
Parabolic double-phase systems; Parabolic p-Laplace systems; Gradient estimates; REGULARITY;
D O I
10.1007/s00030-024-00928-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{2n}{n+2}< p\le 2$$\end{document}. The result is based on a reverse Holder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] INTEGRABILITY OF THE DERIVATIVE OF SOLUTIONS TO A SINGULAR ONE-DIMENSIONAL PARABOLIC PROBLEM
    Nakayasu, Atsushi
    Rybka, Piotr
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (01) : 239 - 257
  • [32] A double-phase eigenvalue problem with large exponents
    Yu, Lujuan
    OPEN MATHEMATICS, 2023, 21 (01):
  • [33] Double-phase problems with reaction of arbitrary growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [34] DOUBLE-PHASE PROBLEMS AND A DISCONTINUITY PROPERTY OF THE SPECTRUM
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 2899 - 2910
  • [35] Integrability for Hardy operators of double phase
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4): : 375 - 402
  • [36] Fine Boundary Continuity for Degenerate Double-Phase Diffusion
    Ciani, Simone
    Henriques, Eurica
    Skrypnik, Igor I.
    POTENTIAL ANALYSIS, 2025,
  • [37] Higher integrability for nonlinear parabolic equations of p-Laplacian type
    Yao, Fengping
    ARCHIV DER MATHEMATIK, 2017, 108 (01) : 85 - 97
  • [38] Higher integrability for nonlinear parabolic equations of p-Laplacian type
    Fengping Yao
    Archiv der Mathematik, 2017, 108 : 85 - 97
  • [39] Instability of solutions to double-phase problems with exponential nonlinearity
    Le, Phuong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7923 - 7933
  • [40] ISOTROPIC AND ANISOTROPIC DOUBLE-PHASE PROBLEMS: OLD AND NEW
    Radulescu, Vicentiu D.
    OPUSCULA MATHEMATICA, 2019, 39 (02) : 259 - 279