Engineering colloidal semiconductor nanocrystals for quantum information processing

被引:23
作者
Almutlaq, Jawaher [1 ]
Liu, Yuan [2 ,3 ]
Mir, Wasim J. [4 ]
Sabatini, Randy P. [2 ]
Englund, Dirk [1 ]
Bakr, Osman M. [4 ]
Sargent, Edward H. [2 ,3 ,5 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[3] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[4] King Abdullah Univ Sci & Technol KAUST, KAUST Catalysis Ctr, Div Phys Sci & Engn PSE, Thuwal, Saudi Arabia
[5] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-PHOTON EMISSION; JANUS PARTICLES; SPIN; ENTANGLEMENT; BLINKING; DOTS; THERMOMETRY; PLATFORMS; COHERENCE; TIME;
D O I
10.1038/s41565-024-01606-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits. This Review highlights the current potential for colloidal quantum dots for applications in quantum sensing and quantum circuits.
引用
收藏
页码:1091 / 1100
页数:10
相关论文
共 131 条
[1]   Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas [J].
Abudayyeh, Hamza ;
Lubotzky, Boaz ;
Blake, Anastasia ;
Wang, Jun ;
Majumder, Somak ;
Hu, Zhongjian ;
Kim, Younghee ;
Htoon, Han ;
Bose, Riya ;
Malko, Anton V. ;
Hollingsworth, Jennifer A. ;
Rapaport, Ronen .
APL PHOTONICS, 2021, 6 (03)
[2]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[3]   Optically Excited Lasing in a Cavity-Based, High-Current-Density Quantum Dot Electroluminescent Device [J].
Ahn, Namyoung ;
Park, Young-Shin ;
Livache, Clement ;
Du, Jun ;
Gungor, Kivanc ;
Kim, Jaehoon ;
Klimov, Victor I. .
ADVANCED MATERIALS, 2023, 35 (09)
[4]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[5]   Direct observation of sp-d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots [J].
Archer, Paul I. ;
Santangelo, Steven A. ;
Gamelin, Daniel R. .
NANO LETTERS, 2007, 7 (04) :1037-1043
[6]   Quantum sensors for biomedical applications [J].
Aslam, Nabeel ;
Zhou, Hengyun ;
Urbach, Elana K. ;
Turner, Matthew J. ;
Walsworth, Ronald L. ;
Lukin, Mikhail D. ;
Park, Hongkun .
NATURE REVIEWS PHYSICS, 2023, 5 (03) :157-169
[7]   Material platforms for spin-based photonic quantum technologies [J].
Atature, Mete ;
Englund, Dirk ;
Vamivakas, Nick ;
Lee, Sang-Yun ;
Wrachtrup, Joerg .
NATURE REVIEWS MATERIALS, 2018, 3 (05) :38-51
[8]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[9]   A colloidal quantum dot spectrometer [J].
Bao, Jie ;
Bawendi, Moungi G. .
NATURE, 2015, 523 (7558) :67-+
[10]   Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities [J].
Barrows, Charles J. ;
Fainblat, Rachel ;
Gamelin, Daniel R. .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (21) :5232-5238