Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative

被引:0
|
作者
Soares, Junior C. A. [1 ,2 ]
Costa, Felix S. [2 ]
Sousa, J. Vanterler C. [2 ]
机构
[1] Mato Grosso State Univ, Dept Math, Rua A S-N, BR-78390000 Barra Do Bugres, Brazil
[2] DEMATI UEMA, PPGEA UEMA, Dept Math, Aerosp Engn, BR-65054 Sao Luis, MA, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Prolongation formula; Invariance condition; zeta-Leibniz-type rule; Fractional equations; Lie group; RULE;
D O I
10.1007/s40314-024-02685-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the application of Lie group theory analysis with zeta-Riemann-Liouville fractional derivative (zeta-RLFD, for short) detailing the construction of infinitesimal prolongation to obtain Lie symmetries. In addition, it addresses the invariance condition without necessarily imposing that the lower limit of the fractional integral is fixed. We find an expression that expands the knowledge regarding the study of exact solutions for fractional differential equations. We apply the Leibniz-type rule for the derivative operator in question to build the prolongation. At last, we calculate the Lie symmetries of the generalized Burgers equation and fractional porous medium equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Tomovski, Zivorad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 507 - 522
  • [32] Fractional Differential Equations, Riemann-Liouville and Jumarie Derivative
    Bastincova, Alena
    Smarda, Zdenek
    XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, 2011, : 43 - 49
  • [33] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [34] Parameter Determination in a Differential Equation of Fractional Order with Riemann-Liouville Fractional Derivative in a Hilbert Space
    Orlovsky, Dmitry G.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2015, 8 (01): : 55 - 63
  • [35] SOME INCOMPLETE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Menon, Mudita
    Mittal, Ekta
    Gupta, Rajni
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 210 - 223
  • [36] Stability analysis of fractional-order systems with the Riemann-Liouville derivative
    Qin, Zhiquan
    Wu, Ranchao
    Lu, Yanfen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01): : 727 - 731
  • [37] On a final value problem for fractional reaction-diffusion equation with Riemann-Liouville fractional derivative
    Ngoc Tran
    Vo Van Au
    Zhou, Yong
    Nguyen Huy Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3086 - 3098
  • [38] Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative
    Bakkyaraj, T.
    Sahadevan, R.
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 447 - 455
  • [39] On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative
    Merdan, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 877 - 888
  • [40] Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann-Liouville Time Derivative
    Durdiev, Durdimurod
    Turdiev, Halim
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,